
AD-/* 085 Og^
TECHNICAL

T TBR.A B
AD

ARSCD - CR - 8005 AD-E 400-421

ECONOMIC TRADE/OFF ANALYSIS:

COMMON HARDWARE/SOFTWARE COMPUTER RESOURCES

FOR THE

ADVANCED ATTACK HELICOPTER (YAH-64)

FIRE CONTROL SYSTEM

RAYMOND J. BRACHMAN, PROGRAM MANAGER

R. J. BRACHMAN ASSOCIATES, INC.

GEORGE CLINEFF, PROJECT ENGINEER

US ARMY ARRADCOM

♦

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
FIRE CONTROL AND SMALL CALIBER

WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

PREPARED UNDER CONTRACT
DAAK 10-79-C-0329

APRIL 1980

The citation in this report of the names of commercial
firms or commercially available products or services
does not constitute official endorsement or approval of
such commercial firms, products, or services by the
U.S. Government.

The views, opinions, and/or findings contained in
this report are those of the author (s) and should
not be construed as an official Department of the Army
position, policy, or decision unless so designated by
other documentation.

TTNPT.A.q.qTFTF.n
SECURITY CLASSIFICATION OF THIS PAGE (Wien Da(a Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

ECONOMIC/TRADE-OFF ANALYSIS: COMMON
HARDWARE-SOFTWARE COMPUTER RESOURCES FOR
THE ADVANCED ATTACK HELICOPTER FIRE
CONTRDT, SY.STKM (V)

5. TYPE OF REPORT & PERIOD COVERED

FINAL
October 1979-April 198C

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfs)

R. J. BRACHMAN ASSOCIATES, INC. STAFF

8. CONTRACT OR GRANT NUMBERfs)

DAAK10-79-C-0329

9. PERFORMING ORGANIZATION NAME AND ADDRESS

R. J, BRACHMAN ASSOCIATES, INC.
P. 0. BOX 1077
HAVERTOWN, PA 19083 (215) 446-0118

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

COMMANDER, ARRADCOM
FIRE CONTROL DIV/FC & SCWSL
DRDAR-SCF-DA - DOVER. N.J.

12. REPORT DATE

April, 1980

07801
13. NUMBER OF PAGES

196
14. MONITORING AGENCY NAME ft ADDRESSfif dUierenl horn ControlUne Ollice)

COMMANDER, ARRADCOM
STINFO, TSD (DRDAR-TSS)
DOVER, N. J. 07801

15. SECURITY CLASS, (of this report)

UNCLASSIFIED
15a. DECLASSIFI CATION/DOWN GRACING

SCHEDULE

16. DISTRlSufibN STATEMENT (oj thla Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (ol the abstract entered tn Block 20, H dlilerent from Report)

18. SUPPLEMENTARY NOTES
J

19. KEY WORDS (Continue on reverse aide //necessary and identify by block number)

.MICROPROGRAMMED-MICROPROCESSOR
,EMULATOR
MASTER INSTRUCTION SET
AUTOMATIC PROGRAM TRANSLATOR
ECONOMIC/TPADK-nFF ANALYSTS TNTKGRAT, PROCESSOR

UNIVERSAL PROCESSOR

2Q-. ABSTRACT fCbnttaue ona rmmrmm slda fif rmcw^Mry and identtfjr by block number)

The economic/trade-off analysis for developing common (standard)
hardware and common software computer resources for the Advanced
Attack Helicopter (AAH-YAH-64) Fire Control System was performed,

The AAH-YAH-64 has a very sophisticated and complex Fire Control
System, composed of 14 subsystems which contain 17 micro -

DD t JAH'TS 1473 EDfTlON OF » MOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TINCT.A.q.qTFTKn
SECURITY CLASSIFICATION OF THIS PAGEflfhan Data Entorad)

20. ABSTRACT
processors. The microprocessors are of ten different hardware
types and use twelve different assembly languages. The AAH-YAH-6|4
has been in development for approximately three years. The
software documentation is not deliverable under the present
contract.

The analysis evaluates three basic approaches toward common-
ality. These are 1) develop common (standard) hardware computer
resources, no change in the software; 2) develop a common soft-
ware language with software aids for each microprocessor, no
change in hardware; 3) develop common (standard) hardware computejr
resources and a common language with software aids and document-
ation.

The proposed common microprocessor design uses the American
Micro Devices Am29116, 52 pin DIP, microprogrammable micro-
processor as an emulator of all the instruction set for approach
(1) above. The proposed common software language is the Master
Instruction Set (MIS) which maps all of the current instruction
sets, and a proposed Automatic Program Translator provides
the required software aids for approach (2), and the proposed
common microprocessor implementing the MIS in micro-code and
the Automatic Program Translator using MIS to generate machine
level object code. A ATP is self-documenting. A true High
Level Language with an optimizing compiler generating MIS
as its object code approach (3).

The analysis examines costs in the area of hardware and
software development, maintenance, supply, and training. The
proposed hardware and software concept (approach (3)) can be
phased into the AAH-YAH-64 program with very little cost and
schedule impact. The proposed concept would result in an
estimated cost avoidance of over $40 million over the 10 year
life cycle. It is estimated that a cost avoidance of $5M to
$9.5M could be expected the first year and $1.7M to $3.4M the
second year. In addition, the common hardware could result
in an estimated cost avoidance of approximately $2.6M in
component purchases during production and initial sparing.

The Economic/Trade-Off analysis recommends the implementa-
tion of approach (3) as soon as possible.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGECWTien DatB Entered)

ACKNOWLEDGEMENT

R. J. Brachman Associates, Inc. wishes to offer their
thanks and express appreciation for the cooperation of

Mr. Ron Nippes, District Sales Manager
American Micro Devices

and
Mr. Marvin Sleven, Vice-President
Automated Products Division
Algorex Corporation

for technical data and assistance during the preparation of this
report.

We wish to express our appreciation to Ms. Mary Adams and
Ms. Jacqueline Zanca for their excellent typing of very complex
sections of this report, last but not least, we wish to express
our gratitude and many thanks to Doris and her "miracle"
workers at D & M Rapid Reproduction, without whose assistance,
this report would not have been published,

R
ALGOREX AIDE is a registered trademark of the Algorex

Corporation, Syosset, NY.

SB
ASSOCIATES. INC.

EXECUTIVE SUMMARY

Introduction (Section I)

The Economic/T
was prepared by R. J
with the Scope of Work
required the design co
development concept fo
reduce the large numbe
present in the AAH Fir
is to reduce the antic
expected when the AAH

rade-off Analysis presented in this report
Brachman Associates, Inc., in accordance
(SOW) Contract DAAK10-79-C-0329. The SOW

ncept of a common microprocessor and the
r a common language and software system to
r of different MP's and assembly languages
e Control System. The purpose of the study
ipated very high software maintenance cost
is fielded.

The totality of coverage of the many regulations relating
to management of computer resources in military systems causes
unintended confusion when applied to microprocessors. The micro-
processor is usually employed in a dedicated role, "deeply
embedded," physically integrated with other circuitry, and uses
applications software with less than 32 K lines of code. It is
suggested that the term "Integral Processor" be used with appro-
priate definitions and boundry conditions to provide clear
guidance to Development, Test and Procurement Personnel.

Data Base (GFM) (Section II)

The GFM data base was limited due to the complexities
of the Advanced Attack Helicopter Contract and the competition
sensitive nature of many subcontracts. The subsystems are identi-
fied by letter. The data base used in this study was derived
from Reports 79-104 (10) and 79-105 (5) by R. J. Brachman
Associates, Inc. These reports compile available hardware and
software data derived from questionnaires, direct contact with
Prime and subcontractors and commercial sources. The AAH Fire
Control System is composed of seventeen different microprocessors
implemented in ten different hardware configurations and twelve
different languages are used to write the application software.
A new microprocessor, the Z-80 was recently added to subsystem
K which also contains a 16 bit microprocessor using four 2901A
4 bit devices. The total application software is in excess of
150,000 lines of code.

n

^
ASSOCIATES. INC.

Technical Approach (Section III)

The present multiple processors and their associated
languages were used as the base for comparison of three basic
approaches to achieving commonality of hardware and/or software.
The three areas explored in this Economic/Trade-off analysis are:

1. Common hardware based upon full emulation of all the
instruction sets. This would not affect any of the currently
developed software. The detailed discussion of the emulator
design is in Appendix A.

2. Common software based upon a common assembly language
using a Master Instruction Set, CMIS) described in Appendix C and an
Automatic Program Translator described in Appendix B. The Auto-
matic Program Translator is self-documenting and would generate
object code for the currently developed MP hardware. This would
require 11 code generators. This would not affect any of the
current hardware designs.

3. Common hardware based upon microcoding the Master Instruc-
tion Set as the common language. The Automatic Program Translator
would be the same as 2 above except that only the code generators
would be required.

Hardware—A Common Microprocessor (Section IV)

The proposed common microprocessor is based upon the American
Micro Devices Am29116 single device microprogrammed microprocessor.
The detailed study is contained in Appendix A. A potential problem
involving PC board area and power dissipation may exist when
attempting to replace the 8 bit microprocessors with the 16 bit
Am29116. The recent disclosure that an 8 bit Z-80 MP was added
to one of the subsystems may represent the potential solution to
the 8 bit packaging problem. Thus, there would be two common
MP's, the Z-80 and the Am29116. The repackaging of the current
MP hardware designs can be easily handled using design tools such
as the Algorex Corporation Automated, Integrated Design and
Engineering—"AIDE" (9) system. This system will produce full
documentation for production as well as highlighting the design
changes, power dissipation MOP, signal tracing between PC boards
within the subsystem, logic loading analysis and original to
current data mapping as well as other documentation.

Software—A Common Language (Section V)

The proposed common language is based upon a Master In-
struction Set (Appendix C) which will permit direct translation

iii s
ASSOCIATES. INC.

between the current 11 assembly language and the MIS. This
enhances traceability and would reduce testing of modified soft-
ware using the MIS. Training, documentation and development
costs would be significantly reduced. The existing software
would be translated to the MIS using the proposed Automatic
Translation of Programs from one computer to another (alternative
I). The Automatic Program Translator is also self-documenting.
A DoD High Level Language such as ADA could be used to develop
an optimizing compiler (Appendix D) which produces MIS as its
object code, then MIS would generate microprocessor object code.
This procedure actually provides more efficient machine language
code (Figure 5).

Economic/Trade-off Analysis (Section VI)

This sect
in other sections
by a Matrix, Tabl
hardware/software
to $9.5M the firs
year after fieldi
approximately $2
of MP components
ing.

ion consolidates the various cost data presented
The Economic/Trade-off analysis is summarized

e I. The implementation of the proposed common
system will also yield cost avoidance of $5M

t year and between $1.7M to $3.4M the second
ng of AAH. In addition, a cost avoidance of
6M could be achieved due to quantity purchases
during production and initial spares provision-

Summary and Recommendations (Section VII)

The proposed common hardware and software system for the
AAH Fire Control System is technically feasible and extremely
cost effective, even though the AAH has been in development for
over 3 years. The proposed program would be non-developmental
Product Improvement Program. It is therefore recommended that:

1. The Master Instruction Set be finalized as soon as
possible to include all microprocessors.

2. The Automatic Program Translator, System Alternative
I be initiated immediately.

3. Initiate the design and brass-boarding of the proposed
common MP which implements the MIS as soon as possible.

4. Expand the application of the proposed MP to all fire
control applications requiring a microprocessor.

iv

a
ASSOCIATES. INC

•H
■P
(0
a

-p
H

01

Ui3

H

>
■H
44
(0

s
H

S^ 0
o <

Oo5a

o - "^ c<

■z
o

UJ
I
3a
003

< a \
ii n a
CL

in

^ «

2

CO

0

*
O O^ :

UJ KS
0. U. ii l1-

_i r < <fl ^

^ (0 0-

(« 1
S >- m:
v^ -• .h

. Ul T <

a Ot Vi S
bio. o i

3

u
o
-p
td
H
Oi
c
ta
u

EH

e
m

2^

CO < <

^ ^^ 2 UJ o O
kTt 'Z o 0^

< ja u.

5b ft
u

■H
-p
fd
e o
-p

<

-p
M

X3
u

o

i
1 3
o l M
u -P -P
o m m U CB 1
H (-1 0 U 0 C 1 a o w • rH 4-) H -P

W -P IT3 0)
c (Q C fd H H W
o 0) 0 g CQ <U

o | (L) 0 C -P c
g 0 g M ■P rd in o
o H 0 rd 3 M n3 -H
U CM U 5 < tn S -P

CJl
c

•H
N

•rH

e
■H
-P
a b
o u

4-1
M fl

O 0 a)
(D OJ -H +J M 'C 0)
M iji-P (d 0) C M

c m m id ^ H a) (d
o S ^J g en -H ^ S

+J tr^ 0 £ OJ oJ 'd s tM C 4-1 (IS S t3 M
o 0 ed d M 0 fi (d
u W j <; EH o H ffi

c
o

•H

td

s
n-i
o
CO
id

1
0
u e -p
0 QJ C

■H S-l +J 0) s O Ul WV V
u >i o a u

C tn co 4J (D td
0 0) td a 5
p: O iH rH (U 4-1
g O rH S TJ 4-1
0 M d s c o
u CM t, w H en

0)
v4J SH

m c (d
U 0) ^

QJ o nd (U 4-)
4-1 H en c M M-I

a cu i en 0) (d 0
QJ -H O (D a 5 en
tn 4-) s-i u <D nd
(D rH O 0 T3 VJ ra
^ 3 -H M G td a

CM S S 0UH K Bl

^—^
H

+1 f"
H . ro
< H o

' H
CN

•
CO m 1 ro • ro 00 CN CO 1 CD

. CM o ^r o o rH *
a^

H

• rH
o

■

■
in

en CO
rH CO

c ^H ■ rH • rH

^ CO

o
H

I ro
o CN

CO
O

I OJ

,-H
1 1 1

uy •
IT)
CM

• OJ ro

rH

« in

OJ

ro
• OJ

0>
• ^r ro

OJ CD o
N 1 •

(N ■^r
i o 1 CN • T CO 1 CD 1 CD

H LD CO t o •
CO • CN . ffi "<r

• • o
ro rH •
m

a^
• •* CJ\ CO

CN in CD • rH CO

OJ

^r
• ' rH • rH

o o 1 CN
in CO

^r i 1 1 1 1

CO • Ol ro cr> in ro ^
• • • . • OJ

m rH H OJ

ro

g
0)
4J
en

SH >i

0 CO fl 4-1

tn 0 en
en 0) 4J -H o
0) O C 4-J 0) cu u
o c 0) rd SH U
o 0) rd g P rd rd en
u M C a, c 5 5 i
cu rd (U 0 <U 0 ■d 4-1 0)
0 Ss 4J rH 4-1 g U l+H CP 4-)
u P c 0 •H 3 rd o a H
o 144 ■H > U u X CO 0) •H

4J -H o rd 0) s 0 1 1 M C 0)
G g en g Q 0) Q 1 1 rd •H a
0) a en en 5 (13 ■H

e c a a) CD 0) - - 4-1 u J
Qi O 0 M in g SH g S m EH

O g rd 03 rd rd fe fn 0 >1

■H B g ^ S u s \ \ en 4-1 rH

0) o o 4-1 4J tn 4J en en O OJ
> u u MH m o IH . _ w Cc a
(D O 0 !H o S a EH 01 3
Q cn en CM CO EH EH rt! Q en

vi

LD

ro

I

ro

oi
CO

• en
o U
CO rd

rH
I rH

o
en Q

OJ CH
CD 0

en
c
0

•rH
rH
rH
•rl

*r a
ro c
r^ ■rH

1 4J
en

rH O • O
ro
a>

X
•H

>H
+>
id
a
4H
IH
O

<U
T3
rd
n
H

0
■H
g
C3
c

4-1 o
en u

in 0 w
rd U
(U
>H Q) •

rH H
O U
rH >i CU

U H
rH „. Xi
(d « rd
43^ EH

TABLE OF CONTENTS

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

SECTION VI

SECTION VII

INTRODUCTION .

DATA BASE ,

TECHNICAL APPROACH ,

HARDWARE-DESIGN AND PACKAGING

SOFTWARE-A COMMON LANGUAGE . .

ECONOMIC/TRADE-OFF ANALYSIS ,

SUMMARY AND RECOMMENDATIONS

Page

1

8

14

24

28

36

45

TASK STUDIES:

APPENDIX A: MICROPROGRAMMED MICROPROCESSOR
EMULATOR FOR ALL MICROPROCESSORS

APPENDIX B: AUTOMATIC PROGRAM TRANSLATOR

APPENDIX C: MASTER INSTRUCTION SET . . .

APPENDIX D: SOFTWARE AIDS

49

85

116

181

VII

SB
ASSOCIATES. INC.

FIGURES

Page

1. SYSTEM BLOCK DIAGRAM 7

2. MACHINE LEVEL AND MICRO-INSTRUCTION
LEVEL INSTRUCTIONS 18

3. MINIMAL Am29116 CONFIGURATION 19

4. EMULATOR I/O, DMA, RAM AND HIGH SPEED
ARITHMETIC PROCESSOR FLOW CHART 20

5. AUTOMATIC PROGRAM TRANSLATOR FLOW CHART 22

TABLES

I. ECONOMIC/TRADE-OFF MATRIX 44

vm

SB
ASSOCIATES. IMC £

SECTION I

INTRODUCTION

w« v ^ ThiS rePort is Prepared in accordance with the Scope of
anS e/S ^^^^ DAAK10-79-C-0329 entitled "An Economic
tvS^M7 de~0ff StUdy 0f a11 Advan^d Attack Helicopter (AAH)
fy^Kioroprocessors and Associated Devices. The SOW states
this task is to make a detailed analysis/trade-off of all system

microprocessors and associated devices and their functions their

celsorfa^r^Mff iSS'-and Packa^g. A standarS miSopro- cessor family will be designed within the system physical and

llTeTl^TTl™1^3-. The eXtent 0f standardizLKn"chSv- aoie will be determined.

A detailed analysis will be made of the existing soft-
fofienfSt?^ of ?oc^ntationf special purpose tools, needed
for generation of applications software, language requirements
and procedures will be developed for documentation p?epa?at?on.'"

contract
Work to be completed ninety (90) days after start of

^m J;he AAH h^s been in development for approximately three
hlTn'a .IZt^ f0Urteen sub syst^s under consideration, each
having at least one microprocessor (MP). The microprocessors
thefSn rVen diff-^t physical types of hardware So^Sr
qnw^VSn rePresent ten different programming languages. The
Associates^no a ^l formidable challenge. R. J. Brachman
rllnlllnV. ?r0:,ect tetm Was able to achieve the unique
set which wil!^^^?0^011 h*fdware design MP' a master instruction set wnich will permit the software system to perform automatic
code conversion from the present twelve assembly languages to the
Master Instruction Set, an optimizing high level language compiler
and an automatic documentation generatio? system. S addit?X
wJth ^T1 e? aPP^ach will be completely cost effective aS3
with early implementation could be phased into the AAH nroaram
without affecting the fielding date of the system! Pro5ram

This report is organized as follows:

Purpose of the study.

This will be covered in the introduction and will dis-
cuss policy, proliferation of embedded computers, and
definitions.

a
ASSOCIATES. INC

Data Base (GFM)

This will be discussed in detail in Section II.
Data Base will cover types and make of processor
hardware and software involved and the data avail-
able for performing the cost or economic/trade-off
analysis.

Technical approach

This will be covered in detail in Section III.
Basically the technical approach addresses
the three options available when attempting
to redesign portions of a given system.
These are a) redesign the hardware without
affecting the software, b) redesign the
software without affecting the hardware,
c) redesign both with minimal impact on
the overall system.

Hardware, design and packaging

This will be covered in detail in Section IV.
This section will cover the packaging of the
proposed common MP and the space available
based on the information provided by the
GFM and analysis of the performance of
the sub-system.

Software

This will be covered in detail in Section V.
This section will discuss software, how it
is handled in the military, how the industry
handles it, documentation and its value and
the approach proposed for implementation of
a common or standard high level language.

Economic/trade-off analysis

This will be covered in detail in Section VI.

a
ASSOCIATES. INC.

This section is the compilation of all the data
provided in the other sections and the cost of the
various approaches as compared to having the system
progress as currently designed.

Summary and recommendations

This will be covered in Section VII. The content
of this section is self-explanatory.

A. Purpose of the study

The Advanced Attack Helicopter is a major weapons system
having a Project Manager. The program is scheduled for both Army
and Department of Defense reviews entitled ASARC and DSARC.
During previous reviews it became known that the AAH contained a
large number of microprocessors. In addition to the different
hardware, a number of different languages are also involved.
This caused considerable concern especially in light of DoD poli-
cy. DoD policy directed toward reducing proliferation of
computer resources and reducing the high cost of computer software
(development and in particular maintenance) are well-defined.
Automatic Data Processing Regulation (ADPR) covered by the Army
Regulation AR18-1 series provides thorough, detailed management
procedures in use to implement DoD policy in this area. The man-
agement of tactical computers, including embedded computers,
acquisition and fielding are to be covered by AR70-XX (draft):
Management of Computer Resources in Army Defense Systems. More
specific and detailed management policy is covered by DARCOM in
its DARCOM Test and Evaluation Guideline (draft) and DARCOM-R
70-16 entitled "Management of Computer Resources in Battlefield
Automated Systems." All these and many other supporting reg-
ulations use adjectives such as "embedded," "real-time,'" and/or
"closed-loop" when describing both hardware and software computer
resources. However when examples are provided, the embedded, real-
time, closed-loop computer is substantially large, expensive and
is well-definable as a major sub system. The area occupied by
embedded, real-time, closed-loop processors which cost several
hundred dollars and utilize only several thousand words of pro-
gramming and are an integral part of the circuitry of the
sub-system are not as well-defined and thus many systems and
sub-systems will be developed having these microprocessors inter-
mixed throughout the circuity. A means must be established to
provide some control and reduce proliferation but not to the
prior extent since the cost of implementing the regula-
tion would exceed the cost of the microprocessors by at least an
order of magnitude (10 times)

0
ASSOCIATES. INC

The motivation for producing the policy statement as
well as implementing regulations is simply cost. The policy
statements of DoD 5000.29(1) and DoD 5000.31(2) specifically
state that cost is the basis for the DoD directive/instruction.
The complexity of managing computer resources is highlighted by
the large number of regulations/instructions covering this area.
The problem with implementing a large number of detailed
regulations/instructions is the cost and personnel resources.
In some current weapon systems, the cost of implementing the
regulations/instructions would exceed the cost of developing and
fielding the computer resources by at least an order of magnitude.
This apparent negative cost ratio should not be a surprise, if
one examines the examples and basis for developing the current
regulations/instructions. While not specifically addressed, it
appears that the processors costing several hundred dollars and
requiring one to two thousand lines of instructions does tech-
nically come under the regulations/instructions. The cost and
human resources required often result in these devices "not
being managed." On a case-by-case basis, this may not be a
problem. However, a case in point is the current AAH program
which has seven different hardware microprocessor configurations
and ten different software languages used with these processors.

Today's weapon fire control systems utilize an extensive
array of sensing devices in the form of radar, electro-optical,
and infra-red devices, laser rangefinder/designators, and arrays
on atmospheric, platform, and weapon sensors. Weapons mounted
in moving platforms require gyro stabilized platforms with fast
response, precision controls as well as control of targeting
sensors. The maneuverability required of today's weapon systems
require maximum use of the system's physical envelope. Sensors
and operating personnel are placed in the most tactically effec-
tive position possible. This leads to additonal requirements in
the form of data transmission and operational displays. The
tactical requirement for combat effectiveness and survivability
dictate the need to decentralize the processing of fire control
data. Further, there are a number of techniques for processing
this data which permit lower cost and more effective use of digital
processing technology.

The data processing industry, by nature of the devices
used, is a digital industry. Weapon system controls dealing with
physical movement of devices and components, operating in a dy-
namic environment, have been principally an analog industry. The
improvement of digital techniques and digital devices has resulted
in a transition of weapon systems control and in particular Fire
Control to more digital techniques. The end product of almost all
fire control functions still is an analog function, i.e., some
physical element, a gun, a platform, a sight moved from one

SB.
ASSOCIATES. IMC "

position to another. The movement while initially controlled
digitally must end up being converted to an analog control sig-
nal. The digital technique including microprocessors are totally
dedicated to this function. Therefore, the identity of these
devices must be defined properly in order to provide their spe-
cific place in the management structure of computer resources.

Further, many of the sub-systems involved in a fire
control system do not necessarily require processors, much less
microprocessors or digital computers. However, after the design
and interface requirements have been established, it is generally
cost effective to use a microprocessor to reduce the total parts
count and number of devices in the sub-system. Therefore, many
microprocessors evolve into a sub-system after development has
been initiated. Management procedures must recognize this
phenomenon.

The current management approach to insure control of a
given area of technology or given discipline is to provide all-
encompassing and total inclusion of every conceivable facet of
that area. In attempting to cover the total spectrum, many con-
trol elements, while in the regulation, are actually unmanageable,
principally through the lack of proper definition and personnel
resources. As an example, the following definitions are extracted
from DARCOM-R 70-16:

A-l ARMY BATTLEFIELD AUTOMATED SYSTEM--A system employ-
ing computer resources that operates or has components
that operates within the boundaries of the battlefield
regardless of the function, mission, or battle
involvement. The system may be an offensive, defen-
sive or direct/indirect support system. Examples of
such systems are weapons, communications, command and
control, intelligence, avionics, missiles, combat
support, and combat service support systems.

A-4 COMPUTER—Electronic machinery, which by means of
stored instructions and data perform rapid complex
calculations or compiles, correlates and selects
data. Examples are analog and digital processors,
information processors, real-time control processors,
electronic calculators, hybrid computers, communica-
tion processors and microprocessors.

A-10 COMPUTER RESOURCES~The totality of computer equip-
ment, computer programs, computer data, associated
computer documentation, contractual services, per-
sonnel and computer supplies.

a
ASSOCIATES. INC.

A-13 COMPUTER SYSTEMS—An interacting assembly consisting
of computer equipment, computer programs and com-
puter data.

A-16 EMBEDDED COMPUTER RESOURCES—The totality of com-
puter resources that form a sub-system or part of
any Army Battlefield Automated System, e.g.,
intelligence collection system, target acquisition
system, or weapon system. (For the purpose of this
regulation the term "embedded computer resource"
is replaced by "Army Battlefield Automated System"
as defined in paragraph A-l.)

As can be seen from the above definitions, the total all-
encompassing nature of the definitions results in an inherent
weakness in the real world management of computer resources in
Battlefield Automated Systems. A new definition or additional
definition is probably not required in view of all those that
exist. However, in order to properly associate the microproces-
sor and its role in the overall Battlefield Automated Systems,
a definition more specifically related to this device is required.
The following definition is suggested:

A-X INTEGRAL MICROPROCESSORS: An integral micropro-
cessor is the device and its associated compon-
ents which provides completeness to a sub-system
function. It is dedicated in nature and generally
does not have the peripherals and internal operating
system normally associated with larger computers.
The Integral Processor is physically and electron-
ically integrated into the sub-system design and
package. It is usually not separable in a physical
sense, its role and modifications of its role are
dictated by the overall performance of the sub-
system within its environment rather than due to
outside or external influences.

The Advanced Attack Helicopter program is considered
"Competition Sensitive." Therefore the sub-systems are identified
by letters. These letters do not have any relationship to the
actual function of the sub-system. Throughout this report we
will be referring to the various processors and the sub-systems
by these letters. This is shown in Figure 1.

a
ASSOCIATES. INC

I
531

|
fd
h
Cn
05

,H •H
Q

fl)
M ^
3 U
m U

■H H
fe 04

B
Q)
-P
CO
>1
w

SECTION II

DATA BASE

A. The Economic/Trade-off analysis required by the SOW in-
cludes a proposed redesign of the microprocessors which will
result in a standard or common MP, a common high level language,
common software, software aids and documentation system, and the
life-cycle cost associated with this effort as compared to the
life-cycle cost of the present design. The combination of several
factors such as the 14 (or 15) microprocessors used in the same
weapon system, the weapon system having been in development for
almost three years, and the concept of re-designing the micro-
processors and supporting software to achieve the commonality and
reduce proliferation makes this study quite unique. The unique-
ness of this study effort is further enhanced by the lack of a
well-defined and easily acquired data base with which to perform
the analysis. The life-cycle cost of a system design is treated
differently within the data processing industry and the U.S. Army.
The lack of certain technical data relative to the microprocessors
also creates a data base problem. The data presented ap-
pears to be quite heterogeneous in its composition. This is due
to the many varied sources investigated in order to obtain use-
ful data for this study. The data base is not intended to be
total or complete but rather to provide sufficient information to
support the Economic/Trade-off analysis. In most cases, the data
was available from a single source. Where multiple sources pro-
vided data and the data differed, the difference was used to
provide a "tolerance band." The hardware data is acceptability
defined, however, the software data is lacking in a number of
areas. Under the current AAH contract, the software and the
documentation for the applications program for all but one sub-
system is not a deliverable item. Thus the details of the soft-
ware were lacking. To overcome the lack of detailed data, the
algorithms used in the various sub-systems were analyzed and the
level of complexity as well as the number of instructions were
estimated. This coupled with the data that was available was
determined to be sufficient for the purpose of this analysis.
The data used in the analysis is described as well as its
source.

B. Hardware Data Base

1. Microprocessor Data

The proposed design of a common (standard) MP must solve

8 a
ASSOCIATES. INC.

the most complex as well as the simplest algorithms. Further,
the proposed design must be physically packaged within the
same unit or sub-system currently mounted in the AAH. The most
complex sub-system computational requirement is met by the Fire
Control Computer. The specification for this computer is des-
cribed in CRITICAL ITEM DEVELOPMENT SPECIFICATION FOR FIRE
CONTROL COMPUTER, AMC-DC-AAH-H3003B, dated 31 October 1978 (4).
This document described the required instruction set and execu-
tion times. In addition, it provides a physical envelope for
packaging of the computer. Additional hardware data was ex-
tracted from the Report 7 9-10 5 entitled "Commonality Study of
Computer Hardware Resources in the Advanced Attack Helicopter
(YAH-64) Fire Control System" (5). This report compiled data
contained in questionnaires answered by almost all the Prime
Contractor/subcontractors on the AAH.

2. Proposed MP Design

The proposed design of the common microprocessor is based
upon the American Micro Devices Am29116. This device is des-
cribed in a paper entitled "A High Performance 16 Bit Bipolar
Microprocessor—The Am29116" (6). Design data and design tech-
niques for microprogrammed microprocessors were obtained from
a series of manuals entitled "Build a Microcomputer Distributed
by Advanced Micro Devices" (7). These two documents provide
excellent design guidance as well as an understanding of the
Am29116 microprogrammed microprocessor (MPMP). The supporting
devices such as ROM and RAM data were updated using information
provided in two parts of a series published in Computer Design,
December 1979 and January 1980 (8). This information augments
that data presented in the previous report 79-105 C5).

3. Packaging

The physical size of the boards used with the MPs are
generally described in report 79-105 (5). The redesign of the
boards is not considered a problem with today's technology, as
there are a number of automatic circuit design and layout pro-
grams available. In particular, Algorex Corporation has a sys-
tem for Automated, Integrated Design and Engineering called
"AIDE" (9) which will permit automatic layout of the PC board
along complete documentation complying with military specs such
as MIL-STD-275B, MIL-P-55110C and MIL-STD-1495. The Algorex
"AIDE" system can provide full manufacturing data and in most
cases permit layout of the board without significantly changing
most of the components already mounted on the PC board. In ad-
dition, special analysis is provided by the Algorex System Map

a
ASSOCIATES. INC

which presents a cumulative analysis of all design changes to
insure current up-to-date data in the final drawings. Further,
Algorex can generate a Signal Trace Report. This per-
mits the tracing of signals through a number of PC boards.
This is important when re-packaging the system and a number of
the MP components may be distributed over several PC^ boards to
meet the physical envelope design constraint. This insures
a fully operational system prior to being manufactured thus
avoiding costly rework.

C. Software

1. Current Microprocessors

The software data available for the current micropro-
cessors is quite limited. Most of the available data has been
compiled in a report 7 9-104 entitled "Commonality Study of Com-
puter Software Resources in the Advanced Attack Helicopter
(YAH-64) Fire Control System" (10). The software requirement in
the form of solution or algorithm solution times and the number
of instructions were deduced from review of two reports published
by Hughes Helicopters.

The reports are YAH-64 Phase II advanced Attack Heli-
copter, Substantiating Technical Data Fire Control Report. These
reports are marked "Competition Sensitive." Therefore specific
references to the data will not be made in this report, al-
though the information was used to generate software estimates.

2. Development Aids

All sub-systems' software was developed using some
development aids. In most cases, the subcontractor utilized
the development aids available from the device manufacturer.
However, a number of the subcontractors, in particular those
using microprogrammed microprocessors, developed their own soft-
ware aids. If the current design is to be supported by other
than the current subcontractors, it would appear that all the
development aids would have to be purchased for this purpose.
This implies extensive training to be able to utilize the ten
different software development systems possible. In developing
the cost data, the development aids or systems available from
the microprocessor manufacturer will be used. The software
aids or development systems vary in cost from $10,000 to $60,000.
Custom design software development systems are estimated to be
double this cost. All but one sub-system were programmed in
assembly language. The one system had 65% of its software
programmed in the PL/M (high level) language. The remainder was

10 a
ASSOCIATES. IHC

programmed in assembly language. Some of the development sys-
tems produce documentation suitable for a third person to use
for maintenance purposes. However, in all cases except one,
the documentation produced is proprietary.

3. Development Costs

The cost of developing the current software for the
various AAH MP microprocessors is treated as sunk cost. However,
the development costs for the new common software will be shown.
Determining the maintenance costs per lines of code (or any
other unit of measure) is more complex than any other factor in
the software maintenance area. A paper presented at a symposium
on Computer Software Engineering in 1976 by Gansler (11) indi-
cated the cost to develop software was in the order of $7 5 per
instruction. Another more current paper dated January 1980 (12)
indicated the DoD cost of line of executable machine level
instruction varies between $40 and $60 per line. Another paper
(13) indicates programmer's production capability at approxi-
mately 1000 lines of code per year. The figure of $60 per
executable line of code would be more comparable to the AAH due
to the almost complete use of assembly language programming. A
number of software papers attempting to explain development
costs, divide the activity into three categories. These are
program design, coding, and testing. While most of the papers
agree on this breakdown, they disagree on the ratio of effort.
For example, a paper published in 1979 (14) shows the ratio of
3:1:3; another paper published in 1973 shows the ratio as
46:20:23, (15); another paper published in 1978 (16) shows the
ratio as 40:20:40; a report covering a slightly different area
but somewhat related showed the ratio 35:15:45 (17). These
variations of cost/time estimates highlight the difficulty in
defining the data base. A composite of these numbers will be
used to derive the base-line cost estimates for the proposed
common microprocessor design of its software. This will be
compared to the estimated cost for additional changes of the
existing software and an estimated cost to generate similar
software using the automatic translator described in Appendix
B.

D. Maintenance

1. Hardware

Hardware maintenance in the data processing industry is
reasonably straightforward, however, in the military, there are
a number of complexities which add significantly to the cost.
For example, training and technical manuals become a significant

11 a j
ASSOCIATES. INC

cost when supporting ten different microprocessors as compared
to one. The reason ten is indicated here is because the hard-
ware maintenance personnel will require a knowledge of the in-
struction set and must be taught some software. Military main-
tenance personnel perform maintenance on the entire subsystem
and thus must know how the MP functions as part of the subsystem.
Another area to be considered is testing of the microprocessor.
The current plan is to provide Automatic Test Equipment (ATE) to
support the AAH. Application program for testing a micropro-
cessor and its related components can vary from $80,000 to
$200,000 per microprocessor system. Thus it is evident that a
single processor is much more cost effective in this area.
Other cost areas to be considered are supply pipeline, supply
direct exchange items, and maintenance float. The Weapon Sys-
tem availability is another factor which must be considered in
the military since the aircraft is of little value if it is not
capable of completing its mission. Another maintenance function
to be considered is overhaul. All systems go through overhaul
at least once during their life cycle. This would require the
depots or the overhaul facility to have proper test equipment,
training and documentation as well as the material to support
the various subsystem microprocessors.

Software

Data on software maintenance are more vague than the de-
velopment costs. Military maintenance personnel are trained to
maintain the subsystem. This requires knowledge of the micro-
processor and its operational software. While the individual
is not permitted to change existing software, that person must
be sufficiently knowledgeable as to report back the changes and
why they are required if a "software bug" is discovered in the
field. Determining the cost of software maintenance is vague in
the data processing industry. Most papers on the subject use
percentages or ratios of a development cost. For example, one
paper (14) quotes an IBM study which states the cost of software
modification after the software is fielded is over one hundred
times the development cost; another paper (17) indicates that
the software maintenance costs 40% higher than the development
costs should be expected; another paper (11) indicates the cost
of maintaining or modifying a line of code can be as high as
$4,000 per instruction. Several other papers indicate the way
to reduce the software maintenance costs is to provide the
proper documentation during the development phase. The Second
Software Life Cycle Management Workshop (13) had as one of its
areas of investigation software maintenance. Review of the
summary of the findings and results of the workshop showed no
discussion of the maintenance problem. Fortunately, the

12 a
ASSOCIATES. INC

software maintenance cost can be reduced by the same tools that
are used to develop the software. Several reports (18) (2) and a
paper (19) indicate that maintenance costs can be significantly-
reduced through the introduction of a number of software aids
and tools during the development cycle. In particular, the
ability to document the software and to produce object code from
documentation represents a significant advantage toward reducing
the cost of software maintenance. A paper presented during the
workshop (13) entitled "Life Cycle Cost Analysis of Instruction
Set Architecture Standardization for Military Computer Base Sys-
tems" by Stone and Coleman showed that the GYK-41 (PDP-11) in-
struction set permitted significant cost reductions in life
cycle costs of software. The proposed master instruction set
is quite similar to the GYK-41 instruction set. Therefore, con-
siderable cost savings should result.

E. Methodology

The varied nature of the data in the data base and the many
sources highlight the problems associated with this Economic/
Trade-off analysis for commonality of hardware and software in
a complex weapons system. The section covering the cost analysis
will utilize this data base. In each case the numbers developed
will be explained as the to source and weighting factor and how
it is applied to the Economic/Trade-off analysis.

13

^
ASSOCIATES. INC.

SECTION III

TECHNICAL APPROACH

General

The requirements of the Statement of Work and the short
time allocated for this study necessitated R, J. Brachman Asso-
ciates, Inc. to implement a very direct plan which covers
three principal technical approaches to achieve commonality
(standardization) of MP hardware and/or software. The three
principal technical approaches are:

1. Common Hardware

This approach considers the redesign of the hardware
without changing the software. This would result in
reduced supply costs, reduced training costs of main-
tenance technicians, and possibly reduced personnel
requirements as well as other associated cost reduc-
tions. The software would not be changed, thus any
software problems and related costs would be the same
as in the current on-going program.

2. Common High Level Language (HLL)

The SOW requires the identification of a common HLL,
software development tools and a documentation system.
The technical approach pursued was to consider the
hardware as currently being developed (i.e., 10 soft-
ware languages) and determine the technology software
aids, and documentation system required to achieve
the common HLL capability. The software study
included investigations into automatic "de-compiling"
of the separate assembly languages to the common HLL,
then providing a software development system that
would be self documenting and produce object code for
all of the various HP's. This approach would reduce
software life-cycle costs significantly, however, the
hardware problems would be the same as the current
on-going program.

3. Common Hardware/Software

This approach was to develop a Master Instruction Set
(MIS) capable of solving all the required algorithms
and functions of the Fire Control System. The common

14

ASSOCIATES. INC.

hardware would implement this MIS and the software
would consider translating all the present assembly
languages to MIS, then produce the software aids and
documentation system for the MIS and a possible HLL.
The existing assembly languages would be "mapped"
into the MIS, thus showing traceability and reducing
the validation costs of the new software. This
approach would provide the advantages of both common
hardware as well software.

The economics/trade-off analysis of the above approaches
is supported by several detailed technical study tasks. The
supporting data required to determine the feasibility of devel-
oping a common microprocessor, automatic translation of programs,
master instruction set, and other software aids, are considered
too detailed technically, and of a specific technical nature to
be included in the body of this report. Therefore each of these
separate studies are included as appendices. Appendix A is the
Feasibility Design Study of the Common Microprocessor Hardware.
Appendix B is the study of Automatic Translation of Programs from
One Computer to Another. Appendix C is the study of the Master
Instruction Set. Appendix D is the study of Software Development
Aids.

B. Hardware

The hardware aspects of this study cover several areas.
These include the physical configuration or packaging of the sub-
system and the processor capability for solving the algorithms of
the sub systems. Ironically, it is the hardware mechanization of
the instruction set that is critical to the solution of the
algorithms. Yet the instruction set is involved in the generation
of software. This highlights the intimacy between hardware and
software in microprocessor and especially in microprogrammable
microprocessors (MPMP). A review of the various sub-systems and
their associated microprocessors is as follows:

A-6802-8 bit CPU
B, C, I, N-8080A/8085A, 8 bit CPU
D, L-2901A, 4 bit slice microprogrammable microprocessor-

16 bits
E-SKC3020, 4 bit slice proprietary CPU-16 bits
F-54LS181, 4 bit slice microprogrammed logic controller-

12 bits
G-MECA- 43, fire control computer microprogrammed-hybrid

technology, 16 bits
H-2901A, 4 bit slice microprogrammed microprocessor-

16 bits
J-SBP9900,16 bits CPU

15 a
ASSOCIATES. INC

K-2901A, 4 bit slice microprogrammed microprocessor-
16 bits

M-SBP9900 (2), 16 bits CPU
O-2901A, 4 bit slice microprogrammed microprocessor-

16 bits

In summary,there are five 8 bit CPU's, 1 or 3 16 bit CPU's,
and 7 microprogrammed microprocessors. The capability of an
8 bit version of microprogram device to solve the 8 bit CPU
problems was not in question. The principal concern was ability
to solve the fire control computer requirements with the
speed required as well as within the total program storage requirements.
The fire control computer is the MECA-43 with appropriate
input/output capabilities. The back-up fire control computer is
a 2901A 16 bit configuration. These two instruction sets were exam-
ined in detail, as well as other available instruction sets,
also studied. The current technology available to permit emula-
tion of all the microprocessors is microprogramming. A new
device to be released the third or fourth quarter of 1980 is the
American Micro Devices AM29116. This is a 16 bit microprogrammed
device in a single 52 pin DIP package. The device capabilities
and the design are discussed in detail in Appendix A. The
AM29116 in its single 52 pin DIP package and 100 nanoseconds exe-
cution time for a microcode instruction means that there should
be very low technical risk in emulating the fire control computer
with its hybrid packaging technique and the back up fire control
computer using the 2901A. The packaging problems relating to the
8 bit CPU's will be discussed in more detail in Section V. From
the initial microcode count and analysis of the MIS, it appears
that the 29116 emulation of the fire control computer will permit
execution of the application software instructions in the same
time or less than the current processors.

Basically, a microprogrammed machine is one in which a
coherent sequence of micro-instructions is used to execute various
commands required by the machine. If the machine is a computer,
each sequence of micro-instructions can be made to execute a com-
puter instruction. All of the little elemental tasks performed
by the machine in executing the computer instruction are called
micro-instructions. The storage area for these micro-instructions
is usually called the microprogram (microcode) memory. A micro-
instruction usually has two primary parts. These are: (1) the
definition and control of all elemental micro-operations to be
carried out and (2) the definition and control of the address of
the next micro-instruction to be executed.

Microprogrammed machines are usually distinguished from
non-microprogrammed machines because they are normally considered
highly ordered and more organized with regard to the control

16

a
ASSOCIATES. INC

function field. In its simplest definition, a microprogram con-
trol unit consists of the microprogram memory and the structure
required to determine the address of its next micro-instruction.
Whereas, older, non-microprogrammed machines implemented the con-
trol function by using combinations of gates and flip-flops
connected in a somewhat random fashion in order to generate the
required timing and control signal for the machine. A machine
instruction is defined by the number of operational codes to be
executed, the number of memory locations to be addressed and the
word size of the machine, i.e., 8 bits, 12 bits, 16 bits. In 8
bit machines, if one word will not permit execution of an instruc-
tion, then two words must be used. A microprogrammed machine has
machine level instructions comparable to the non-microprogrammed
machine, however, it also microprograms instructions. These are
not dependent upon the work size of the machine level instruction,
but on number of control and definition functions to be implemented.
Figure 2 is a comparison of machine level instruction and the
micro-instruction.

The above description highlights the fact that block dia-
grams of MPMP's such as shown in Figure 3 and Figure 4 often show
the microcode memory as a single block. This block has the same
number of input and output lines as the number of bits in the
microcode instruction word. The full system shown in Figure 4 and
described in Appendix A uses an 80 bit microcode instruction word.
The minimal system shown in Figure 3 uses a 56 bit microcode
instruction word. A detailed design study (beyond the scope of
this contract) should result in a smaller microcode instruction
word in both cases.

C. Software

The present MP's in the AAH use ten different assembly
languages, depending on the final Fire Control System Configura-
tion. The current software for all the MP's combined amounts to
between 150,000 and 200,000 lines of code. The cost to convert
this code to a common language would probably equal the original
cost to write the code and require several years or a large staff.
The initial investigations into the State-of-the-Art of "de-compiling"
techniques revealed a few special cases where this had been accom-
plished. However, further investigations resulted in the conclusion
that this approach was beyond the State-of-the-Art and would require
extensive research with a very high technical risk. This approach
was therefore abandoned.

The next most effective approach investigated was the
automatic translation of programs from one computer to another.
This proved quite feasible and resulted in several additional

17 a
ASSOCIATES. INC

o
H

u
D
Pi

>

H
SB
U

g

1 """
I

u 1
0^ CN .
D « i
O |
M f

a o
M
&H
rt!
S iH
H Pi j
EH I
cn i
w !
Q 1

w
a
o
u

CM
o

rn

o
H
EH
U
D
(H
FH
co

H

o

CM
o

u
H
g

u
EH
W

I

EH
h X
H p
W g
cn

w
D c
^ <
< o
EH J
CO

en
o
<ri D
CN J
g 3
<

n w
o u
CTi Pi
OJ D
g O
< CO

n
o «
o^
CM i^i

g
<: <

oi Q
M J

X
u P
u g

DO
+J
-H

CO

H

0
4-)

ts

<o
, o

rH Bi
C^ EH
CM cn
g S S3 H

CO
B CO
U w
S s

Q
Q

PQ 3
1

U 0
t0
E

(D

o
0

o

c
fO

o

(fl
+J
ca

•H
ca
c
o
0

c
tfl

m
4-1
•H
Xi

I
10

3

4->

-H 4->

rd o
M
tn en
O 0)
JH O
a, a)
o -H

a.

ca

o
-H
u
(0
>

OJ
-G
4J o

■H
4-1
ft
0

■H
44
•H
u
a o
m 4-i

o
M

4-1
c
O
o

!H CO
Q) rH

4-> (0
CO C

•H tri
Cn-H
0) en

c
o

•H
44
O

!H
4-1
cn
C 4-1 (U

■H nJ
c

QJ -H
C 4-1 QJ

O 4-1

S
CD

■H

O T3 4^
tO 4-1
g -a

C H
Q) (0 rH
xi
EH

(0
SH
0) cn
-P 0)
tn c

•H -H
!Ti4H
0) CD
54 T3

tn
c
o

•H
44
o

!H
4J
ca
c

-H

>
0)
r4

o
•H
4J
u

iH
4-1
cn
C

■rH

I
o
54
U

■rH

c

0)
>
0)

0)
c

•H

O
rd
S

•H
fa

12

/'

D

AM2910

MICROPROGRAM

CONTROLLER

12
,'

MICROPROGRAM

MEMORY

PIPELINE REGISTER

N

Ain2920 (1 1/2)

OCTAL FLIP-FLOP

12

16

Figure 3 - Minimal Am 29115 Configuration

OE and CE
Controls

19 s
ASSOCIATES. INC

Q 0) > -H y OJ

cu a) u -H a.jraji-'tai-H

=3 2

Xojauoo 'BSBQ 'ssajppy sng uoT30unj-T3"[nn

E

B

-o
c

l-i

•H
0) id 3 ^

.-H O o
0) u U u

en 01 •H u
u H o c
01 QJ Tl o

■u o
a Q M tq M
QJ O u O
D o Q,
O" e .-(w P.
OJ 0 CJ a D

CO ■H 3 Wl
d M o

o -H OJ M iH

n TJ 4-* 0) 0)
3 u C n 4J

DM -H o >» c *J D £ o ua M

en
H

O

vO
i-4 o <r iA <r
>—1 ^H o <N ^H
ON OA en O CTN
rg r^i CM OJ

5 5 3 1 1

20

Figure 4
ABftOCIATCS. INC.

benefits. In addition, the translation system would be self-
documenting .

A common HLL was not specifically considered due to
possible availability of ADA. In addition, HLL's have a number
of limitations, especially when execution time and memory space
are critical. Other limitations were the reason "de-compiling"
or reverse compiling was considered not possible. These limita-
tions are described in detail in Appendix B. This does not mean
that an efficient HLL and its compiler cannot be provided. The
schematic diagram of the translator information flow, figure 5,
shows two alternative approaches, these being the MIS or form of
MACRO Assembly Language and a HLL with reverse compiler and com-
piler. Both alternatives are based upon the development of a
translator from the source assembly languages of a particular MP
into a uniform-tabular-representation of the program. The assem-
bly language translation process analyzes the syntax and local
semantics of the individual statements in an assembly language
program of any one of the ten source microprocessors and produces
a uniform-tabular-representation of the program. It is based
upon advanced state-of-the-art syntax analysis techniques which
have proved to be invaluable. Specifically, a translator program
for these assembly languages will be generated automatically. In
addition to checking the statements for syntactic and some semantic
errors, the generated program will also store the statements in a
tabular form for later processing.

D. Master Instruction Set

The development of a common intermediate or assembly
language was pursued due to problems of a HLL and reverse com-
piling. All the available instruction sets were studied to deter-
mine if one could be the candidate common language. The many
microprogrammed MP's and the wide variety of instructions led to
the conclusion that a Master Instruction Set would be more effec-
tive than selecting any one of the MP instruction sets. The MIS
described in Appendix C is based upon all the available instruc-
tion sets. Subsystems E, H, & K, instructions sets were not
available. Further, the entire instruction set of each MP was
studied rather than only the instructions used. The resulting MIS
provides a very powerful software capability. Thus, it becomes
an optimizing common focal point for the development of the MPMP
and automatic program translator.

21 s
ASSOCIATES, INC

0)
>

•H

c
M

rH

H

0)
>

-H
4J

C

DJ
-P
rH

•z
o

2
Ui
T
3

in
S
< i

o I

U

Q 10

X

ca

o

^ si
<n o E

J CO c
rfP< UJ

. to T <

^ ^ in 2

u
3

22

m < <

SO Z o of ,

< -JO. a

M
O
+J
ID
--i
m
c
ru
M

EH

B
ro
VH
tn
O

ft
o

•H
+J
ra
e
o

■p
p

-P

U

o
H

E. Software Development Aids

A number of software development aids are discussed in
Appendix D. Also included is a discussion of HLL and optimizing
compilers.

23

Iji
ASSOCIATES. INC

SECTION IV

HARDWARE-DESIGN PACKAGING

A. General

The Statement of Work requires a packaging and design
(redesign) analysis to be performed for the proposed common
microprocessor (MP), Redesign of the current PC boards are
permitted however, the overall sub-system package cannot be
changed. While not specifically stated, the proposed intro-
duction of a common MP for the Fire Control Sub-Systems must
not require more total electrical power than is currently pro-
vided.

B. Microprocessors, Current Design

The principle source of data relating to the current
hardware configurations is Report 79-105, Commonality of Hard-
ware Computer Resources (5). The name "Microprocessor" when
used in this Economic/Trade-Off Analysis also includes RAM,
ROM, Micro-code memory, and I/O parts. In addition to the
mix of microprocessor units (MPU) described in Section III
paragraph B, twelve (12) different type RAM devices, eleven
(11) different type ROM devices, four (4) different type
microprogram sequences (including a proprietary discrete com-
ponent design), and four (4) different type micro-code memory
devices are used in the various sub-systems. The MPU's vary
from 40 pin DIP's to 64 pin DIP's plus one MPU configured
from four (4) hybrid packages. The memory devices vary from
16 pin DIP's to 24 pin DIP's and are organized from 1024 x 1
bit to 256 x 4 bit devices. Several of the microprocessors
have EPROM write circuitry packaged on the PC board. The pro-
duction version of these PC boards will not contain this circuitry,
thus indicating a PC board redesign.

The packaging of the MP's and related components was
dictated by the space (volume) available for the particular
sub-system in the AAH airframe. The PC boards vary from 4" x
4.5" to 9" x 12" including multilayers and irregular shapes.
In addition, the power dissipation requirements, especially the
microprogrammed MP's, strongly influenced the PC board and sub-
system package design. Unfortunately, MP assembly drawings were
not available for this analysis, thus the packaging discussion

24 s
ASSOCIATES. IMC.

is somewhat general

C. Common Microprocessors, Proposed Design

The proposed common MP design had to be capable of
solving all the sub-system algorithms, from the simplest to
most complex, packaged within the available sub-system, and not
increase the total power requirements. The proposed common
MP^design is based upon the American Micro Devices Am291l6.
This is a 16 bit microprogrammable device packaged in a single
52 pin DIP. The proposed design is described in detail in
Appendix A, It will interface directly with all the support
devices including the micro-code memory used with the 2901A
microprogrammed MP. Thus replacing all the microprogrammed MP's
with the Am2 9116 will not cause any repackaging problems and
should reduce the power requirement. The repackaging and power
dissipation could be a problem in the sub-system using 8 bit
MP's, The minimal configuration (figure 3) represents a
processor 30 to 100 times faster (depending on the algorithms
used) than the conventional 8 bit MP's. Thus, it represents an
"overkill" from the application software standpoint. This,
of course, is not a concern if this results in hardware and
software commonality. Unfortunately, two potential problem
areas may exsist which would negate the use of the minimal
configuration in the 8 bit MP sub-systems. These are physical
PC board space and power dissipation. The lack of detailed
design data including schematics, logic diagrams and assembly
drawings is the basis for describing the two problem areas as
"potential" problem areas.

The physical PC board space problem area results from
the minimal common MP configuration requiring approximately
21 "equivalent units" while the 8 bit MP's vary between 6 and 12
"equivalent units." An "equivalent unit" is an electronic
packaging term used to represent the space (area) occupied by
one 14/16 pin DIP. The packaging of the proposed common MP is
discussed in more detail below. The power dissipation problem
area could be sufficiently critical as to require the use of
a "second" common MP. The power requirements of the minimal
configuration can vary between 3 and 5 times that of the 8 bit
MP's to be replaced. This would require redesign of the sub-
system power supply which could easily exceed space available
within the sub-system. Detailed engineering data is required
before a final decision can be made.

25

a
ASSOCIATES. INC

the

D. Design and Packaging

Replacing the current sixteen (16) "Integral" processors
in fourteen (14) sub-systems by a coimnon MP appears to be a most
formidable task. In fact, opinions such as unrealistic,
economically not feasible, and unacceptable delay in fielding
the AAH would be expected if it were not for the commonality
studies. Reports 79-104 (10) and 79-105 (5), the Am29116,
automated design and packaging techniques such as the ALGOREX
AIDE, and this Economic/Trade-Off Analysis.

The use of automated PC board design and packaging
techniques during R & D is generally accepted. There are
many different design systems available today. The quantity
and quality of documentation provided by these automated systems
varies from very little to comprehensive. However, most of
these systems are not suitable for design modifications after
the design has been released(accepted), nor are they suitable
for redesigning sections of the PC board while the other
components remain fixed in their original positions. An
automated system meeting the requirements for design and re-
packaging the MP PC boards in the Fire Control Sub-Systems is
ALGOREX AIDE (Automated Integrated Design and Engineering).
AIDE can accept raw logic diagrams, schematics or equations and
produce the bulk of the drawings, artwork, NC tapes and other
required documentation. The ALGOREX AIDER automatically checks
the design and provides engineering diagnostics, partitions the
system, if not specified, provides optimum assignment and place-
ment of components, if not specified, generates assembly drawings,
provides routing data between PC boards or hybrid LSI's,
produces photo-ready artwork for manufacturing, provides drill
templates and/or control tapes for automatic drilling machines,
provides control tapes for automatic component insection and
resting machines, generates punched tapes for a wide variety
of numerically controlled machining operations (APT), and
designs wired back-panels, fully methodized wiring process sheets,
or control media for automatic or semi-automatic wiring machines.
In addition, it generates documentation for engineering, de-
bugging, publications, and field service such as Signal Code
List, Reference Designation and Pin List, Signal Description List,
Thermal Map, Temperature Map, Power Dissipation Map, Original
to current Data Mapping, Cumulative System Analysis Map and a
Signal Trace Report. The drawings comply with military specif-
ications such as MIL-STD-275D, MIL-P-55110C and MIL-STD-1495.
Utilization of the ALGOREX AIDER would result in the first
redesigned PC board becoming available for component population
and test in 3-4 months after start. The entire redesign could be
completed in 12-18 months depending upon the available design
data.

26 a
ASSOCIATES. INC

The several 8 bit MP sub-systems will require
component and software analysis to redesign. The software
analysis is required to determine if a memory capacity vs.
speed trade-off can be made. Many application programs written
for 8 bit MP's use tight in-line coding to meet the solution
time of the algorithm. This is accomplished at the cost of
additional memory. The actual dollar cost is low-due to advances
in memory technology thus making this methodology acceptable.
Utilizing the speed of the proposed common MP, memory require-
ments may be reduced between 20% and 50%, thus increasing the
probability of replacing the 8 bit MP's and their supporting
devices. The only other problem area not covered in the
Economis/Trade-Off Analysis is the power requirements. The only
comment possible in this area without analysis of the current
sub-system design is that the overall power requirements for the
proposed common MP will be less than the current requirements.

E. The 17th Microprocessor

This paragraph was added after the final draft of this
Report was submitted for review and comment. Information was
provided about mid-March, 1980, that sub-system K had added a
Z-80, 8 bit microporcessor to the 2901A-16 bit MP already in
the sub-system. This disclosure highlights comments relative
to management of "Integral Processors" in Section I, Introduction.
This late disclosure prevented the Z-80 from being discussed in
most of this report. Section VI was partially modified to account
for a worst case solution requiring two common MP's. The two
MP's would be the Am29116 to replace all 16 bit and/or micro-
programmed MP's and the Z-80 to replace all 8 bit MP's. The
Z-80 will execute the instruction set of the 8080A/8085A thus
minimizing the impact upon software maintenance.

27

a
ASSOCIATES. INC

SECTION V

SOFTWARE - A COMMON LANGUAGE

A. General

This section discuss
well as application software
(Development and Field Maint
ance. The literature relati
voluminous. However, the li
very limited. None of the 1
maintenance (some allege to)
systems using different proc
This lack of other source da
of this study.

es the areas of software costs, as
, development systems, training
enance), documentation, and mainten-
ng to large software systems is
terature devoted to MP software is
iterature specifically considers
life cycle costs, multiple processor

essors, or software production aids,
ta further highlights the originality

B, Common Software

The keystone of any common software system is its
language. Traditionally, reference to a "common software language"
implied a High Level Language. A number of MP companies use a
common assembly language for a "family" of devices. However,
the commonality generally was upward. As the MP's became more
powerful, even this form of commonality was lost. In order to
avoid costly software rewrites and maintain user confidence,
the MP companies developed "cross-assemblers." This is software
used to translate one language to another (more powerful to less
powerful). The efficiency of the cross-assembled software varied
greatly in solution speed and memory requirements when compared
to manually programming each different MP. This fact did not
appear to affect commercial applications of MP's. However,
Military weapon systems using "Integral" MP's could not tolerate
these inefficiencies. In many weapon systems microprogrammed
MP's, with a unique (problem oriented) instruction set, are
used to meet the system performance requirements. This is high-
lighted in the Fire Control System of the AAH. Seven subsystems
which solve very complex algorithms and/or have stringent thru-
put time requirements use MPMP's with unique instruction sets.

Analysis of the available instruction sets of the MP's
resulted in the disclosure that none of the instruction sets
had adequate addressing modes to qualify as the common assembly
language. A Master Instruction Set (MIS) was designed to support
the FCS MP's. A detailed task report describing the MIS and

28 a
ASSOCIATES. INC.

showing the relationship and/or mapping of the available MP
instruction sets is contained in Appendix C. The mapping of
the instructions sets into the MIS will enhance the traceability
of the translated software. The instruction sets of three (3)
MPMP's were not available during this study. Therefore, approx-
imately 4 man-months would be required to finalize the MIS.

The proposed use of the MIS is not in lieu of a HLL,
but rather as part of a two level software development capabil-
ity. The HLL finally selected would compile to the MIS. The
MIS would then be used to generate the MP Object Code. This
approach overcomes the problems (Appendix B) of using a HLL
compiler to generate the efficient object code required by the
"Integral" MP's.

C. Automatic Translation of Programs

Assembly language programs have been treated as special
cases in the software world. This has principally been due
limited documentation and most of all the idiosyncrasies of
the original programmer. Most software engineers agree that
modification of an assembly language program by a "third per-
son" entails a high technical risk and an associated very high
cost. Many times the "third person" can show it would cost
less to rewrite the program rather than try to modify it.
The AAH Fire Control Subsystem MMP's currently utilize ten (10)
different assembly languages. Thus, it becomes obvious why
there is considerable concern as to the potentially very high
software support costs. Discussions relative to development
of a common language are contained in subparagraph B above and
Appendix B and C. The two software options include: a) using
the current assembly languages, a common assembly language
and generating the object code using cross-assemblers and b)
using a common MP with its assembly language and rewriting
the existing software. The cost to completely rewrite of all
the software manually is considered close to the original R&D
software costs. Realistically, there are many more variable
and unknowns during the R&D phase. We estimate that the
manual rewrite would cost between 5 0% and 6 0% of the R&D
costs. In either case, the cost and time to manually develop
a software system using a common language would probably
deter its implementation. Fortunately, R. J. Brachman Associates,
Inc.'s Task Study Group developed a technique for Automatic
Translation of a Program from one computer to another. A
schematic diagram of the proposed approach to Automatic Transla-
tion is shown in Figure 5. It should be noted that each step
produces complete documentation and the end product, object
code, is produced from the documentation. Development of the
Automatic Translator, including translation of all existing

29

a
ASSOCIATES. INC

H
H

0)
>

■H
4J

c
M
(U

H

0)
>
-P
."O
c
SH

0)
4J

o

ui
1
D

VU

si
0 r

£

11
SI
•i I

a.!
o l. v

a w

2 1
ea

•« * o
■t
in {

tf> \L1 i

tiLOa-
tn o z

Si-**!;

in

a)
fl
00

30

V UJVOCL.

UJ O o r

•JTZ O ^ ,

< -IQ. a

M
0
-P
n
H
m
c
(0
M

e n
u
Cn
0

»^
Hi

u
■H

e o
-p
3

+1
M

u

o

programs to MIS (Alternative I) is estimated to require 5 man-
years over a 1 1/2 calendar year period plus computer time.
Implementation of the Automatic Translator using the MIS and
generating object code for the current MP's would require a
code generator for each assembly language. Thus, Ten Code
generators would be required. Design of each code generator
requires approximately 6 man-months.

D. Software Development Costs

The cost of software development for the present MP's
is treated as a "sunk" cost. The cost to develop the proposed
software system is included in the overall Economic/trade-off
Analysis.

E. Software Development Systems

All the current application software was developed using
a commercial development system or a custom designed system.
Commercial development systems cost between $10,000 and $50,000.
Custom systems are estimated to cost twice the above. In addi-
tion, the custom systems are considered proprietary. This is
not critical since commercial development systems are available
for all MP's used in the AAH. The number of development systems
required to support the AAH FCS will depend upon how many
different facilities will support the software. The development
system for the proposed common MP/MIS is estimated to cost
$30,000.

F. Training

Training requirements for MP support cover many areas.
The principal areas considered for the Economic/Trade-off
Analysis are as follows:

1. Assembly Language Programmers

The transition from R & D to production may or
may not involve the same subcontractors. In either
case, it is assumed that new programmers will be
provided for production and field support. The number
of programmers are estimated to vary from 6 to 28
depending upon the number of different subsystems,
subcontractors, and languages in use. This is a
conservative estimate since the number of programmers
during the R&D phase varied between 52 and 90.
Generally, it requires 3 months for a trained pro-
grammer to become proficient in a given language.
For the purpose of this analysis, we will consider

31

a
ASSOCIATES. INC.

14 subcontractors, each with 2 programmers using the
present multiple MP's and one facility having 6 pro-
grammers and using the MIS/Automatic Translation
System.

2. Software Development Systems

The above programmer personnel will be required
to use an appropriate software development system.
Suppliers of these systems estimate it would require
between 4 5 and 6 0 days of continuous use to become
proficient. The cost impact is directly proportional
to the number of languages supported and the number of
programmers.

3. Field Maintenance

a. Microprocessor Testing

Field maintenance is currently planned to be per-
formed by use of Built-in Test Equipment (BITE) at the
Aviation Unit Maintenance (AVUM) level and use of
Automatic Test Equipment (ATE) at the Aviation Inter-
mediate Maintenance (AVIM) level and depot. The
current maintenance concept does not require Field
Maintenance Technicians (FMT) to be trained in MP
logic and software since subassemblies will be
replaced at the AVUM and PC boards at the AVIM.
Unfortunately, the maintenance concept may be
unrealistic at the AVIM due to the high software
cost and thus limited diagnostic capability of the
ATE. MP's and their associated components are com-
plex devices to test. Assuming the ATE can achieve
an acceptable level of PC board level diagnostics,
the functional test software for the MP and its
associated devices, could vary between $20,000 to
$6 0,000. However, the PC boards and subassemblies
must be repaired at the Depot. This requires the
ATE at the Depot to fault isolate to the piece-part
level. ATE software (and hardware) costs can vary
between $80,000 and $400,000 depending upon the
test accessibility and degree of diagnostics
achieved. These cost estimates are supported by
previous studies (18) (20) relating to ATE software.
In addition, it is assumed that the cost of the
Depot Maintenance Work Requirement (DMWR) is included.

32

a
ASSOCIATES. INC.

b. Technical Manuals (TM's)/Field Manuals (FM's)

TM's and FM's are required for all fielded systems.
Even though BITE and ATE are supposed to reduce the
technical skill levels in the Field and Depot, FMT's
and organization personnel will still be required to
have some knowledge of the subsystem operation. The
TM's and FM's will have to contain functional descrip-
tions of the hardware as well as the software. It is
estimated that the hardware descriptions can vary
between 80 and 200 pages and the software descriptions
can vary between 100 and 300 pages. The cost per page
to prepare these manuals varies between $150 and $225.
Each subsystem will require its own TM and FM. Thus,
even though a number of MP's are the same, each differ-
ent subcontractor will prepare a different TM and FM.
A common MP and a common software language would result
in the same data appearing in all the TM's and FM's.

G. Software Documentation

Current information provided by the PM's staff indicates
that the software documentation from only one subsystem is
deliverable. All the other subsystem contractors consider their
documentation proprietary. A number of papers (16) (17) (18)
show that the quality of the documentation directly affects the
cost of software maintenance. A programmer's manual is required
in addition to the application software documentation. The
conventional MP programmer's manuals can be obtained from the
manufacturer, however, programmer's manuals for the seven MP's
which are microprogrammed must be obtained from the subsystem
contractor. These manuals are estimated to cost between
$20,000 and $30,000 each. There is some question as to whether
the U.S. Army will purchase any of the documentation or "wait"
until the Production Phase. It is estimated that the cost to
purchase the software documentation will cost about the same as
the Alternative I Automatic Program Translator (ATP). The ATP
should significantly reduce the cost of documentation during
the Production Phase.

H. Software Maintenance Cost

Several papers (11) (12) (14) have been written on the
subject. However, sections of the papers have to be combined
to provide useful information. The paper by Gansler (11) quotes
a U.S. Air Force study showing the cost of Software Maintenance
can be as high as $4,000 per line. The paper by Schindler (12)
states that DoD expects the cost per line of executable machine-
level code to rise from $40 per line to $65 per line by 1984.

33

0
ASSOCIATES. INC

Most HLL compilers produce 8 to 20 lines of machine-level execut-
able code per HLL statement. Another paper by Schindler (14)
quotes an IBM study which states that the cost to modify a line
of code after the software has been fielded is 100 times the
development cost. Combining data from both Schindler papers
(12) (14), the $4,000 per line of code maintenance cost stated
in the Gansler paper (11) does not appear to be unreasonable.
It is estimated that $4,000 represents between two and three
man-weeks of effort.

Military weapon systems are tested during the R&D
and Production Phases. However, these tests only approximate
the tactical operation environmental. Thus, these sytems
generally require a number of changes during the first two
years in the field. Changes/modifications to fielded U.S. Army
weapon systems are via Engineering Change Proposals (ECP).
Experience indicates a system as complex as the AAH could have
100 to 200 ECP's per month, the first year, 75 to 150 ECP's
per month, the second year and approximately 5 0 ECP's per month
throughout its life cycle. It is estimated that 25% of the
ECP's, 1st year, 15% ECP's, 2nd year and 8% ECP's, throughout
the life cycle, will result in software changes. This results in
an estimated 300-600 software changes, 1st year; 135-270 changes
2nd year; and 50 changes per year throughout the life cycle.
The first year in the field should produce the most extensive
changes. It is not unreasonable to expect that each software
change will average 25 lines of code during the life cycle.
This results in an estimated 7,500-15,000 lines of code 1st year,
the second year 3,37 5-6,7 50 and 1,500 lines of code throughout
the life cycle. Estimated costs could vary between $30 million
and $60 million the first year to approximately $6 million per
year throughout the life cycle. Considering a cost as low as
$1,000 per line, the cost can vary between $7.5 million and $15
million the first year to $1.5 throughout the life cycle.* A
study by Stone and Coleman (13) shows that the Instruction Set
Architecture can have a significant impact on the cost of soft-
ware maintenance. The proposed MIS is very similar to the
Instruction Set described as resulting 49% lower maintenance
cost as compared to other military computer instruction sets.
Solutions to the high cost of software maintenance are being
pursued by many organizations. A paper by Goetz (19) provides
"steps toward solution" of the high cost of software maintenance.
The proposed MIS, Automatic Program Translator, Alternative I,
the documentation system and an optimizing compiler for the HLL
coincide with the "steps toward solution." It is estimated that
the proposed software systems could reduce software maintenance

Considering the above represents changes in lines of code
from 10% the 1st year to 1% throughout the life cycle, the estimate
appears to be reasonable.

34 a
ASSOCIATES. INC

costs by 50%.

Another area of maintenance unique to the military is
Overhaul. During this activity, the weapon system is completely
rebuilt so it is the equivalent of a new system. Software also
is Overhauled, although the term "program rewrite" is used to
describe this activity. This activity is somewhat random as to
its occurrence. A weapon system undergoes many changes during
its life cycle. These changes may affect the software. Further,
weapons, subsystems and tactics will change. Experience has
shown that a weapon system such as the AAH could have two com-
plete program rewrites during its life cycle. The number of
personnel involved with the system rewrite will depend upon the
number of different MP's, subcontractors, and different assembly
languages being used. The level of effort is estimated to vary
between 22 and 150 man-years. Thus, the two rewrites would
required between 44 and 300 man-years of effort. The range of
personnel to perform the rewrite is derived from data presented
by Putnam (13), Thibodeau and Dobson (13) and Parr (13).

35

a
ASSOCIATES, INC

SECTION VI

ECONOMIC/TRADE-OFF ANALYSIS

A. General

This section consolidates the data presented in the
other sections of this report. The final cost summary will
contain estimated MP hardware and software development and support
for the current AAH, the Common MP (no software changes), Common
Software (no hardware changes), and Common Hardware and Software
based upon the MIS and the Automatic Program Translator.

B. Current AAH MP Life Cycle Cost Estimates

1. Hardware

The data presented in report 79-105 (5) indicates that
the MP's would add 3 00-400 new line items to the supply system.
At an extimated cost of $6,000 per line item, this becomes $1.8
million to $2.4 million per year, or $18 million to $24 million
over the 10 year life cycle. (This does not include cost of
the parts.) One MP using the 54 LS181 logic controller will
probably have to be replaced due to impending obsolescence. The
redesign should cost approximately $200,000-$300,000. The MECA-
43 uses hybrid packages which are proprietary. In addition,
the Doppler system uses a proprietary bit-slice MP. These
should be replaced to maintain ease of replacement, and supply.
Thru competitive procurement current MP technology as shown
in the proposed common MP design could easily replace these
proprietary devices with a significant cost avoidance during
the AAH life cycle. The cost summary does not include the cost
of redesigning the MP using the 54 LS181.

2. Technical Manuals and Field Manuals

The MP hardware sections of the TM's and FM's are estim-
ated to require between 8 0 and 200 pages each. At an average
cost of $200 per page, this becomes $32,000 to $80,000 per MP or
$512,000 to $1,280,000 for the 16 microprocessors.

3. Training--Depot Personnel

The MP's will be repaired at the Depot. Even though it
is planned to use ATE, the repair technicians will require train-
ing for each of the MP's and how they function in the subsystem.

36 a
&SSOCIATIS. IMC

The training cost includes the course as well as the technician's
salary. Based upon data compiled in the ATSS Economic/Trade-off
study (20), six to ten technicians over the life cycle will be
trained for six weeks on each MP. This is 288 to 48 0 man-weeks
@ $16.00/hr.= $184,320 to $307,200.

4. Automatic Test Equipment (ATE)

Automatic Test Equipment will be used in the field at
the AVIM and at the Depot. The ATE used at the Depot will fault
isolate to the piece-part level. It is not known whether the
AVIM ATE software will be a subset of the Depot software. For
this analysis, the AVIM ATE software will be considered a subset
of the Depot ATE software. The degree or amount of "probing"
(manually touching a test point with a probe under ATE direc-
tion) to be used in testing the MP's is unknown. Extensive
probing can double the cost of the ATE software. The Fire Con-
trol Computer has the most complex testing requirements whereas
subsystem N using an 8 08 5A MP probably has the least complex
testing requirements. ATE software costs discussed in ATSS
Economic Study (20) were as high as $700,000 for a mini-computer
not much more complex than the Fire Control Computer used in the
AAH.

Prior ATE software estimates based upon (18) (20) pro-
vided the range of $80,000 to $400,000 for MP's. The complexity
of the Fire Control Computer places it at the top of this range.
It is estimated that the ATE software for the FC computer could
easily exceed $400,000. For this analysis, estimated ATE test
software costs for the MP's in each subsystem are as follows:

A 8 $80,000
B, C, I, & N @ $80,000
J & M (2) @ $95,000
E, F, & H @ $180,000
D, L, & O @ $250,000
K, (2 different MP's)@ $260,000
G 0 $400,000

The total ATE software costs can vary by a large amount,
depending upon whether one company develops all the software or
whether each subcontractor develops the software for their own
subsystem. For this analysis, the ATE software will be developed
by one company. Additional cost complexities arise due to the
unknown level of testability. For example. Subsystem B has the
MP and memory plus I/O mounted on two PC boards with excellent
test accessibility, whereas subsystem I has the MP, memory and
I/O integrated with the other electronic components on the same
PC board thus providing poor test accessibility. The probing
requirements could easily double the software costs of I as

37 a
ASSOCIATES. IMC.

compared to B even though most of the MP test software is identi-
cal. The ATE software cost estimates are based upon each MP test
program being developed separately and all common MP test programs
being developed together. The common development should result
in 50% less software costs for each additional MP of the same
type. The ATE software cost estimates for the MP's by subsystem
then become:

Individual Software Common Software
(K=$1,000)

A = 80K A = 80K
B, C, I & N = 320K B, C, I & N = 200K
J & M (2) = 190K J & M (2) = 145K
E, F & H = 560K E, F & H = 360K
D, L & O = 750K D, L & 0 = 500K
K (2 different MP's) = 260K K (2 different MP's) = 260K
G = 40CK G = 400K

$2,540K $1,945K

Note: The above ATE software costs are estimated for
the microprocessors, memory and related I/O only.
ATE software costs to test the entire subsystem, PC
board, or assembly will be more extensive and are
beyond the scope of this study. Subsystem K has
both a 2901A, 16 bit MP and a Z 80, 8 bit MP.
Subsystem M has 2 identical MP's.

5. Software Development Systems

Software Development Systems are discussed in Section V,
Para. E. For the purposes of this analysis, the average cost of
a system for conventional MP's is estimated to be $20,000.
Therefore, six subsystems developed by six subcontractors would
cost $120,000. Custom development systems are estimated to cost
$40,000. Therefore, ten subsystems developed by ten subcontrac-
tors are estimated to cost $400,000. The development system for
the common MP design is estimated to cost $30,000.

6. Software Maintenance

a. Experience has shown that the AAH software will be
completely rewritten twice over the projected 10 year life cycle
of the system. These changes may be caused by major changes in
subsystems, weapons and ammo, and tactical use of the AAH. The
level of effort for this activity can vary between 44 and 300

38

a
ASSOCIATES. IMC.

man-years for the two rewrites. This results from using methods
for estimating software costs discussed in papers referenced
in Para. H, Section V. Thus, it is estimated that approximately
56 man-years per rewrite would be required if each subcontractor
made the rewrite individually. A central organization performing
the rewrites would reduce this to approximately 3 5 man-years
per rewrite and a central organization using the proposed MIS
and Automatic Program Translator would reduce the level to 22
man-years per rewrite. The two program rewrites are estimated
as follows:

Individual Rewrite

Central Rewrite with
Automatic Code Gener-
ators

Central Rewrite using
Automatic Translator
and MIS Language

112 M-years @ $100,000 = $11.2 million

70 M-years @ $100,000 = $ 7 million

44 M-years @ $100,000 = $ 4.4 million

b. Software maintenance costs based upon ECP's (Section
V) and $1,000 per line of code are estimated as follows:

(Costs in Millions of Dollars)
Central
Maintenance

Individual Central Common
Maintenance Maintenance Software
Present Software Common Software Common
Present Hardware Present Hardware Hardware

1st yr. (avg.) 7.5 - 1.5

2nd yr. (avg.) 3.4 - 6.8

Each yr. (avg.) x 8 12

5.6 - 11.2

2.6 - 5.1

9

4 - 7.5

1.7 - 3.4

6

Total 10 yr. ECP
Life Cycle Cost: 22.9 - 33.8 17.2 - 25.3 11.7 - 16.9

The common software, present hardware would require the
development of the Automatic Program Translator and 11 separate
code generators in addition to and development of an optimizing
compiler completion of the MIS. This effort is estimated to
cost:

39

a
ASSOCIATES. INC

APT $ 450,000

11 Code Generators
(11 x $36,000/code) 396,000

MIS 50,000

Compiler 500,000

$1,396,000= $1.4 million

C. Proposed Common MP Life Cycle Cost Estimate

1. Hardware

a. Full System Emulator

The design described in Appendix A indicates that develop-
ment of the microcode for the six MP's analyzed would cost
approximately $350,000. Using a conservative cost estimate, the
three additional MP's would cost $150,000. The development and
debugging of the hardware is estimated to cost $200,000. There-
fore, the development costs for the Full System Emulator is
estimated to be $700,000. The proposed design would add approx-
imately 100 new line items to the supply system. Thus,at an
estimated cost of $6,000 per line item, the supply system costs
become $600,000 per year or $6 million over the 10 year life
cycle.

b. Master Instruction Set Implementation

The design of the common MP using microcode to implement
the MIS would be similar to the Full System Emulator. The
principal difference is the reduced amount of microcode. Thus,
the implementation of the MIS and common MP is estimated to be
$200,000 for the hardware design, $50,000 for the MIS microcode
and $100,000 development costs for a total cost of $350,000.
The number of line items introduced into the supply system is
the same as the Full System Emulator. Thus, the cost is estimated
to be $600,000 per year.

2. Technical Manuals and Field Manuals

The MP software sections of the TM's and FM's are
estimated to require between 100 and 300 pages each. At an
average cost of $200 per page, this becomes $40,000 to $120,000
(per TM and FM),

40

a
ASSOCIATES. INC.

3. Training-Depot Personnel

The MP's will be repaired at the Depot. Even though it
is planned to use ATE, the repair technicians will require
training on the MP's and how they function in the subsystem.
The use of a common MP and MIS should make the technicians
more proficient. Based upon data compiled in the ATSS Economics
Study (20), six to ten technicians would be trained for six
weeks over the life cycle. This then becomes 3 6 to 6 0 man weeks
@ $16.00/hour or $23,000 to $38,400.

4. Automatic Test Equipment

From the discussion in Para. B-4 above, it is assumed
that the proposed common MP design would be as complex as the
Fire Control Computer (subsystems D, L & 0 are a more realistic
comparison) to test. This, then, results in an estimated soft-
ware cost of $4 00,000. Considering the probing will be differ-
ent, for each subsystem, the additional cost is estimated to be
12 subsystems x 15,000 per program or $180,000.

5. Software

a. Full System Emulator

The implementation of the Full System Emulator does not
affect the software currently used in the AAH MP's. Therfore,
the software discussions contained in Para. B-5 above applies
to this design.

b. Automatic Program Translation

The use of the MIS requires translation or rewrite of
all the existing software. The Proposed Automatic Program Trans-
lator is considered essential to this option. The Automatic
Program Translator is discussed in Appendix B and the MIS in
Appendix C. Design of the Automatic Translator is estimated at
$450,000 plus $36,000 code generator for the Z-80 and $25,000
computer time. Updating the MIS to include all the current MP
instruction sets would cost $50,000. Thus, this option (Alterna-
tive I) costs $561,000. The addition of a HLL optimizing compiler
can be added when the language is selected. The compiler cost is
estimated to be $500,000.

C. Maintenance

Software maintenance for the AAH covers two principal
categories. These are complete rewrite due to mission and other
changes and software changes required by ECP's. The data for

41 a
ASSOCIATES. INC

the proposed system is extracted from Para. B-5 above.

ECP

1st yr.

2nd yr.

Total 8 yrs.

$4M -$7.5M

1.7M - 3.4M

6M

ECP sub Total $11.7M - 16.9M

Rewrite Software (2x) 4.4M - 4.4M

Total 10 yr
Bif:e. Cycle Cost $16.1M - 21.3M

E. Packaging

The SOW. requires a degree 3of repackaging as long as the
overall configuration is not changed. Even though the Am 29116
is a single 52 pin :DIPp a MPMP requires a number of supporting
devices such as microcode memory, naicrocode sequencer and control
logic. In addition to a. physicaliPC board area limitation, the
MPMP's require a iconsidaarable amount of power. Therefore, sub-
systems A, B, C, ; I, & N-cwould require redesign of the power
supply as well as the MP PC board. There is insufficient data
to. properly assess this problem, anea. Fortunately (or unfortun- .
ately), a technical meeting at US ARRADCOM, on 17 March 1980
provide information that subsystem K added a Z 80, 8 bit MP to
the 2901A, 16 bit MPMP "already iiiathe subsystem. It thus appears
that the Z 80 can be used^in A, B, C, I & N with very little
packaging problems. The: use of an automatic circuit design
aids such as,the Algorex "AIDE" <S) will produce a new PC board
layout plus.extensive documentation at an estimated average cost
of $3,0,000 per systenu _JIhi.s results in an estimated repackaging
cost of $480,000 for the 16 microprocessors.

F. Common Component Economics

The proposed comiaon'MP plus Z 80 design will provide
other life cycle cost avoidance in area of component purchases.
Based upon the new information disclosing the Z 80, the AAH now
has 16 MP's and 12 assembly languages. It is assumed that all
the present MP's in subsystems D, E, F, G, H, J, K, L, M, & O

42'
rws-^r a

ASftOClATES. IMC.

can be replaced by the Am 29116 and the MP's in subsystems
A, B, C, I, N & K can be replaced by the Z 80. This then results
in 11 Am 29116 MP's and 6 Z 80 MP's per system. Based upon 3000
systems plus 20% spares, the potential quantities to be purchased
are 36,000 Am 29116^ and 21,600 Z BO'S, In addition, RAM, ROM
and PROM memories will exceed 200,000 devices.* It is estimated
that a 20%-25% reduction in parts cost would result. At an
average of $50 per device, the current AAH Fire Control System
for 3000 systems plus 20% spares are estimated to cost approx-
imately 257,600 x $50 = $12.88 million. The proposed common
hardware is estimated to cost $10.3 million.

G. Economic/Trade-off Analysis

The Economic/Trade-off Analysis is presented as a
Matrix in Table I.

H. Cost Avoidance

1. First year cost avoidance thru full implementation of the
proposed common MP, MIS, Automatic Translator, and optimizing
HLL compiler is estimated between $3.5M and $7.5M with a
potential additional cost avoidance for ATE software between
$1.5M and $2M for a total of $5M to $9.5M.

2. Second Year cost avoidance thru full implementation
as above is estimated between $1.7M and $3.4M.

3. Common MP hardware purchases should result in a cost
avoidance of approximately $2.6M for production and initial
spares provisioning.

*The component count is considered the same even though
one 29116 will replace 4-290^^. Thus the total MP related
component count is in excess of 250,000 devices.

43

S
ASSOCIATES. INC.

1
O
13

H

O 1
U -P

U
4-1

4J
H
<

r~-
O W 4-1 M 0) 1 tn H •HMO O 0 C 1 C
S 0 en ■H +J H 4-1 ■H S-i CN

c co C
4-> (fl
n3 H U en

N CU
•H H co in 1

o
•

^J4

m
o

CO
o

0 <u 0 Is w ID U -H 0^ c^ r-l e o e 0) 0 G 4-> C ■H a.
g o g S-l +J td co O 4-" g

rH o ^ o rd 3 u id -H 04 0
u a, u S < En S 4J o u

4->
V4 C

O 0 <u
ai a) -H 4-) M t) a)
M Cn+J rd (1) c; i-i

C id res rd .H in QJ m
0 S 3 g CO -H DJ S
6 +J Cn O G OJ 0) ^3 g 4-1 C 4-1 cd g ^3 M
0 O rd 3 S-i O G (d
u U} J < ^ U H K

c
o
CO

•H

u

I
M-l
O

co
rd
0

1
0
M g 4-1
u <u G
H M 4-J 0)
s O CO S-l "O 0)

W >i O G U
G co en 4-i 0) rd
o (U cd CUSB ^- O r-t H (U 4-1
pi O M ^3 TJ IW
0 M 3 g G O
u Oi fe w H en

*4-)
co G
U 0)

(U O -73 0)
4J n-l CO G S-l
G & 1 W 0) rd
QJ -H O 0) a, 15
CO 4J !-(O <U TJ
(1) rH U 0^5-1
H 3 -H M G rd
f^ s s CUM X

CN tfi

ro
O

o

CM
CT> CO

r~ ii-i
o rH •
^r \a

• 1 ro i ro 1
H o £N O
<sy ro

•
in

CN • ro
•

CN 1

in

1

ro

1

■ • CN

CN

CN

U
O
CO
CO

OJ
o
o
u

0)

O, rd
O 3
S-l 4J

4J -H
G S
CU
g G
a. o o I

<H g
CU o
> u
CU
Q

o
en

c
o

o u

tn
• ^r CO

(N vo o
CN

^
» •

1 CM ■ <* 00 1 VD 1
LD CO • o •

00 • CN • CTl «*
• • o

n rH •
ro '

CTl

CM

CN

■*

1 CM •
LD CO

00 • CM
•

CO

CO

0)
u
c
rd
C
0)

4-1

G
•H
rd
2
OJ
M
rd

+J
4-1
o
en

g
0)
-p
co
>i

en

4-1

C
<D
g a,
o

rH
0)
>
0)
a
a)
H
id
3
4J
4H
0
cn

01
4-1
•H
u
3
OJ

g
rd
!H

o
H

44

G
o

•H
4-1
rd

4-1
C
(U
g
3
o
o
a
0)
H
rd
3

4-1
UH
O
en

OJ
U
id
3
-d

SH
id
K

I
I

co

S

s
En

U
rd
3

4-1
44
O
en

i
i

co

a

s
EH

0)
H
rd
3

4-1
4H
o
en

w
EH
<

4J
o
a
01
a

eo

^r 0^ CO
in eo • rH 00

• H • rH

ro c^ m m ^r
• . • • CM

H H CN

4-1
CO
O
u
CO
g
01

0i 4-1
G H

•H
C (U

■H C
rd ■H

u i-l
EH

3

in
co

I

CT\
ro

CN

I

■H

• CO
o u
U3 rd

rH
1 rH

O
cn Q •
CN 4H
UD o

m
G
0

•H
rH
rH
•H

^ s
CO G
r- •H

I 4J
CO

rH 0 • U
CO

»
•y*
F"l

•H
M
4J
rd
S

4H
IW
o
0)

13
rd
M

EH

0
-H
g
o
G

4-1 0
to u

S4 0 w
rd U
OJ
>4 0) .

rH H
o U
rH >1 01

U rH
iH A
^d ® rd 5^ &H

SECTION VII

SUMMARY AND RECOMMENDATIONS

The economic/trade-off analysis was based upon the com-
parison of the life cycle costs of the current heterogeneous mix
of seventeen microprocessors composed of ten different hardware
configurations and twelve (12) different assembly languages pro-
ceeding thru production and into the field and (1) common hard-
ware (one type MP) with the current twelve different assembly
languages and (2) the current ten different hardware configura-
tions with a common assembly language and Automatic Program
Translator and (3) a proposed common hardware design (one type
MP) with a common assembly language and Automatic Program Trans-
lator. The detailed technical design concepts for the common
Hardware, Automatic Program Translator, common assembly lan-
guage (Master Instruction Set) and Software Aids are presented
in Appendices A thru D,

Table I, Section VI is a matrix showing the above com-
parison. The proposed common Hardware with a common assembly
language and Automatic Program Translator will result in a cost
avoidance in excess of $40 million over the 10 year life cycle
of the AAH. Cost avoidance between $5 million and $9.5 million
could be realized during the first two years after fielding the
AAH.

It is therefore recommended that:

1. The term "Integral Processor" be adopted as an
approved description for microprocessors integrated
into the PC board packaging with other components.
Provide appropriate means for specifying deliverable
hardware and software documentation during develop-
ment and production.

2. Initiate the development of the Automatic Program
Translator with the Master Instruction Set im-
mediately. This will result in significant soft-
ware maintenance cost avoidance regardless of which
configuration AAH Fire Control System is fielded.

3. Initiate the design of the proposed common MP
implementing the Master Instruction Set, using the
Am29116 and ALGOREX AIDER. This will permit dem-
onstration of the power of the common MP design as

45 a
ASSOCIATES. INC

well as the ability to repackage typical sub-
system MP's,

Establish a program and schedule to phase-in the
common MP into each sub-system.

46

Q
ASSOCIATES. INC

REFERENCES

1. Department of Defense Directive No. 5000.29

Subject: Management of Computer Resources in Major
Defense Systems, dated April 26, 1976.

2. Department of Defense Instruction No. 5000.31

Subject: Interim List of DoD Approved High Order Pro-
gramming Languages (HOL), Date November 24, 1976

3. DARCOM Regulation No. 70-16

Subject: Management of Computer Resources in Battlefield
Automated Systems, Department of the Army,
Headquarters U.S. Army Material Development and
Readiness Command, 16 July 1979.

4. Critical Item Development Specification for Fire Control
Computer YAH-64, AMC-DC-AAH-H3003B Code Identification
02741, 31 October 1978.

5. Report No. 79-105 by R. J. Brachman Associates, Inc.

Subject: Commonality Study of Computer Hardware Resources
in the Advanced Attack Helicopter (YAH-64) Fire
Control System, October 24, 1979

6. William J. Harmon, Jr. and Warren J. Miller, "A High Perform-
ance 16 bit Bipolar Microprocessor" the Am29116, American
Micro Devices, Sunnyvale, California.

7. Build a Microcomputer, Chapters 1-9, Advanced Micro Devices,
1978.

8. Eugene R. Hnatek, Semiconductor Memory Update—Two Part
Series ROMS/RAMS, Computer Design, December 1979, January
1980.

9. Algorex Corporation Brochure, Algorex Corporation, Syosset,
New York, 19 76.

47

a
ASSOCIATES. INC.

10. Report No. 79-104 of R. J. Brachman Associates, "Commonality
Study of Computer Software Resources in the Advanced
Attack Helicopter (YAH-64) Fire Control System,"
October, 1979.

11. Jacques S. Gansler, Deputy Assistant Secretary of Defense
(Material Acquisition) Symposium on Computer Software
Engineering Dated April 20, 1976, Polytechnic Institute
of New York, New York City, N.Y.

12. Max Schindler, High Level Languages Fuel Increasing Micro-
computer Real Time Applications, Electronic Design,
January, 1980.

13. Second Software Life Cycle Management Workshop sponsored
by U.S. Army Computer Systems Command and the IEEE Com-
puter Society, Atlanta, Georgia, August 21-22, 1978.

14. Max Schindler, "Focus on software: While Problems Abound,
So Do Solutions—If You Can Find Them," Electronic Design,
March 15, 1979.

15. Dr. Barry W. Boehm, "Software and Its Impact: A Quantitative
Assessment," Datamation, May 1973.

16. Paul Oliver, "Examining Programming Costs," Computer Deci-
sions, April, 1978.

17. Jan Snyders, "Slashing Software Maintenance Costs," Computer
Decisions, July 1979.

18. Defense Focal Point, Department of the Army, Project Master
Plan for Operational Performance Analysis Language System,
Dated 28 February 19 75.

19. Martin A. Goetz, "Advanced Commercial Applications in the
80 "s," Datamation, 1979.

20. R. J. Brachman, Memorandum FCF-7-76, The Economics of Intro-
ducing Automatic Test Support System (ATSS) Into the Army
Maintenance System, Frankford Arsenal, Philadelphia, Pa.,
Dated 13 April 1976.

48

9
ASSOCIATES. IMC

APPENDIX A:

REPORT OF A TASK STUDY ON

FEASIBILITY OF DEVELOPING A

COMMON MICROPROCESSOR (MICROPROGRAMMED EMULATOR)

WITH COST ESTIMATES

FOR THE

U.S. ARMY ADVANCED ATTACK HELICOPTER

FIRE CONTROL SYSTEM

INVESTIGATORS: DR. RICHARD E. MERWIN

MR. JAGAN SUD

49

a
ASSOCIATES. IMC

This page was left blank intentionally,

50 s
ASSOCIATES. INC

TABLE OF CONTENTS

Introduction 54

Emulator Hardware Design 55

Microprocessor Architecture Mapping 67

Estimate of Emulator Micro-Instruction Requirements 71

Emulator Design Cost Estimates 77

Use of High Level Programming Language to Generate Emulators 8 0

Conclusions and Summary 8 2

51 a
ASSOCIATIS. INC

LIST OF FIGURES

1. Emulator Hardware Functional Block Diagram

2a. Functional Control/Data Flow Diagram

2b. Emulator I/O, DMA, RAM, and High Speed Arithmetic Processor Flow Chart

2c. Minimal 29116 Configuration

3. Am29116 Chip Architecture

4. Assumed Am29116 Pin Assignments

5a. Micro-Instruction Word Layout

5h. Micro-Instruction Word Layout

6. Host-Target Machine Relationship

7. Emulator Flow Chart

8. Motorola 6802 Micro-Instruction Flow Chart

9. 8080(A)/8085(A) Micro-Instruction Flow Chart

52 a
ASSOCIATES. INC £

LIST OF TABLES

I. AMD Devices Required to Implement Microprocessor Emulator

II. Target Machine Characteristics

III. Am29116 To Target Machine Register Mapping

IV. Emulator Micro-Instruction Cost Estimates

V. Emulator Cost Estimates

53

a
ASSOCIATES. INC

INTRODUCTION

The purpose of this task group study is to demonstrate the technical
feasibility of developing a common microprocessor to replace the various
microprocessors (MP) used in the 14 subsystems of the Advanced Attack Heli-
copter (AAH) Fire Control System. It was determined that the current MP's
could be emulated using microprogramming techniques. There are 14 separate
subsystems composed of seven different hardware microprocessor configurations,
which also result in ten different software MP configurations. (1,2) The
government-furnished data provides sufficient software information for six MP's,
The six MP's cover the range from the simplest to most complex MP requirements,
therefore, the design developed in this task group study is considered valid
as the common MP for all AAH Fire Control subsystems.

The Fire Control Computer instruction set and instruction execution times
were specified in the government document entitled, "Critical Item Development
Specification for Fire Control Computer," YAH-64, No. AMC-DC-AAH-H3003B,
Date 31 October 1978. It is therefore determined that the Fire Control Computer
and the back-up Fire Control Computer represent the most critical performance
requirements. Thus, the principal design effort described in this study is
directed toward equaling or improving the specified performance requirements.
The simplest configuration of the common MP is described briefly just to
demonstrate that the parts count and capability can be reduced as required by
particular subsystems.

The emulator design is based on the new (not yet released) Advanced Micro
Devices (AMD) Am29116 CPU device. This microprogram controlled device has a
16-bit wide data path, 32 general purpose registers, a barrel shifter, and a
16-bit arithmetic logic unit (ALU) with a wide range of arithmetic and logical
operations.

In addition to the design of the emulator hardware which is based upon a
selection of AMD chips, an estimate has been made of the number of micro-instruc-
tions required to interpret the machine instruction set of the six microprocessors
being emulated. A cost estimate of generating the microprogrammed emulators and
a discussion of the feasibility of using a high-level language (HLL) to
microcode compiler to generate the emulators concludes the report.

The approach taken to design the emulators was to first define a hard-
ware system that contained all the primitive operational functions required to
represent each of the six microprocessors. Using the bit slice approach
developed by AMD permits great flexibility in defining data paths, register
sizes, and levels of hardware control. The next step was to define the micro-
instruction control word format which supports the execution of the primitive
functions contained in the microprocessors to be emulated. Each microprocessor
internal architecture is mapped onto the proposed hardware system including ALU
operations, memory management, register connections, interrupt processing, data
paths, and shift and status bit manipulations.

The design of the microprogrammed interpreters for each of the six micro-
processors is based upon the available internal operations of the Am291l6 along
with the other supporting chips. Such capabilities as interrupts, direct
memory access, and microsequencing must be factored in at this stage to account
for their interaction with the micro-instruction control functions.

54

The basic

a
ASSOCIATES. INC.

control flow consists of first an instruction fetch cycle which utilizes an
instruction address stored in a program status word (PSW) or a register referred
to as a program counter (PC). The next operation is to determine the addressing
mode used to define the address of the operand to be fetched from storage (if
required). Finally, the required arithmetic, logical, or shift operation is
performed to complete the machine instruction interpretation cycle.

The cost estimate for the generation of the six emulators is based upon
the number of micro-instructions categorized in terms of difficulty of genera-
tion. In general, the cost of generating microprograms is much higher than the
cost of conventional programming. Systems programming is generally regarded
as the most difficult type of conventional programming and microprogramming is
more complicated and will cost proportionately more. This topic will be dealt
with below in more detail.

In view of the high cost of generating microprograms, the use of tools to
reduce this cost is highly desirable. There have been some recent developments
in generating microprograms directly from the PASCAL high-level programming
language. The use of this tool to generate either emulators or microprocessor
machine language will be described. A particularly interesting approach is
to generate versions of the present software programs for the six microprocessors
in terms of the "Master Instruction Set" (MIS) language (3) proposed by R. J.
Brachman Associates, Inc. A simple one-time translation would then convert
this standard representation into each microprocessor's machine language. Pro-
gram maintenance could be either at the HLL or MIS level.

55 a
ASSOCIATES, INC

EMULATOR HARDWARE DESIGN

The design of an emulator capable of replacing six existing microprocessors
must begin with the selection of hardware components. The six microprocessors
being replaced are:

1. Motorola 6802

2. Intel 8080/85

3. TI SBP 9900

4. Am2901A - Back-up Fire Control Computer*

5. MECA 43 Fire Control Computer

6. 54LS 181 Special Chip

^There are four other microprocessors configured using the Am2901A
four-bit slice device. These have equal or lesser capability than
the back-up Fire Control Computer.

These units cover a wide spectrum of hardware design including eight and 16
bit data paths, up to 16 levels of interrupt capability, direct memory access,
and up to 16 general purpose registers.

In order to replace this wide range of microprocessor capabilities the
new (3rd/4th quarter 1980) Am29116 CPU chip was selected. This 52-pin device
features up to 32 general purpose 16-bit registers, 16-bit data paths, arith-
metic and logical operations, and a barrel shifter. An internal control line
decoder supports a wide range of internal functions based upon 16 input control
lines driven by an external control word storage unit.

In addition to the CPU, a wide range of other emulator support functions
must be provided to meet the Fire Control Computer requirements. The Am2910
chip provides microprogram sequencing and branch control, control of the
instruction and control word registers, and input to mapping PROMs for condition
codes and device priority. Interrupt processing requires two Am2914 and one
Am2913 device to accomodate up to 16 levels of interrupt priority while an
Am2940 provides direct memory access (DMA) functions. The chips noted above
provide control within the emulator and another group of chips provide such
functions as instruction register, data bus interface, variable cycle system
clock, and multiplexors providing data path control.

A hardware functional block diagram of the emulator design is shown in
Figure 1. This shows the principal data flow paths along with the control
lines. It is assumed in this design that the random access memory (RAM), read
only memory (ROM), and the 1/0 system controls are accessed via a data bus
and address bus and appear external to the emulator. A more detailed block
diagram of the emulator is shown in Figure 2a and the I/O and memory management
system is shown in Figure 2b. At this level all the data paths and control
lines are clearly shown along with the AMD device numbers for all the hardware
components. A list of AMD devices and their functions is shown in Table I.
A' minimal configuration would use the devices marked with an asterisk. The
block diagram of this configuration is shown as Figure 2c.

56 a
ASSOCIATES. INC.

e 1
<U J! ^ u a 1
m o

IN

3
6 s

" "I 4J 'H

o ix s e a
M • 4-1 U 4J

<- -13 'H o ft
O Z C u u C

c-i a ra < cu 3

X

—t1

I o

<

_r

^r

SLSJ ^V
DO Z
B O

■H Pi

00 QJ "K

rv

v^r ^v

«

^: o o
H
O

■
ai u rj
an CJ> >^ CJ

a>

€<
H m
•H 4-1

0 3
H

r
6 a

i
00
a
a
3

Q

A

^r*

J-> OH O -

0) S Or-H

V \
u ao

•H C
4-1 —(

O UJ fu4
E y, u r~t

*J o c ON
-* O 3
u u ^H
< a.
O r^.
a a CU (U h •H O.JS 01 U ftJ ^H

i i 1 . |
*■ " -

— vD tfi
i-t r-l

1 ■ * * t

u h M
CTv

o m
o

en u
4J
14

^ ai NO u-l 9 2 '
ifi rz o 0 O iH i-H IJ cn H Vi

CU m CO i-H 0) hj o ^
WO) cri ON •H (B > m

1—I
<i -a c csi
E -a OJ 1
Q < U CJ

o
M

CM
1

CM

M h B
QJ ra O
tn tx. u

1
ttJ CM

Q M u a

; / . 1 i 1 f
*. .. ^^ ^ ^^ «, ̂ ^^

00
.tH rH

NO
f-H

1 ' 1
; | ' '

v

1
XOJ3UO0 'B^BQ 'sssjppy sng uoxsounj-f3-[nH

a o
o

O Pu

U U
o ai
u g
N A
^ *j
3 ■H
S f

>■. b
■u -a u
o a -H
a> CO 3 t-1
H O O

OJ M B
w Q> -H u

U H O c
0) OJ •O o
a •a B 4J o
c o •M ta U
a> u u O r^i^niMHHiKaiUk
3 o a.
cr <-* *-» a.
01 o CJ a. 3

en •H 3 V) T
u a h O

o •H OJ i-i M r-l
V4 T3 *J OJ a

ZD u e a) ij .c
py -H o ^ C IJ
u X o CO o

s£>
-H o u-i ^r
■-H rH o fM rH
a\ ON cr> ON ON
CM CM CM CM

5 5 5 4 5

59

ASftOCLATES. INC.

t 1
1
1
1

Am2920 (1 1/2)

OCTAL FLIP-FLOP
i2 '

1

-*-|

12

-

4

D

AM2910
I CC

MICROPROGRAM

CONTROLLER

'-

CI
Am29116 Y

I

IEN

-c 16 /
«

^ /

12

f

<

P^

f

1

A

MICROPROGRAM

MEMORY
-*-^

PIPELINE REGISTER

4 f 3 6 /

«

1 y
1

N

V

Figure 2c - Minimal Am 29116 Configuration

' 60 M
>

-<
>

OE and CE
Controls

ASSOCIATES. INC

^ t—1
0) o

13 fn (H
o o 4->
o > B
c •H o h

UJ
Q QJ

U
4->

N ■p P 13 Ifl
n c- -d M C • i-i

-o S c QJ cd CJ)

B N cd M S > o
u rt FH =3 o B !H CC
CD P* QJ ^ CQ as; o o

i—l K 4J o h p. U p QJ
2 rH UJ C p o t-^ X L0 p B
o O I—i R) ■M o u ■ZD rH •H QJ •H
l-l rH H *-> a> h rt u B s QJ U P rH X
H O ■p PH X u o H p ■H ^H QJ <n QJ S
U h c 3 4-> rt C o c P^ 10 i—1 oi •H ^
z 4-> o FH ■H 4-i <D c o PH M cd M •H
=3 c U fn h h u <u u cd (D 'H (n 0) CU QJ
[1, o O o o u S H cd <S} Pi 13

u e ■M •H 4J M •V -a p. (U e O
c: cd C fH C u 10 c h 13 fn B cd u
O in h 1—i C- M o Ifl rt o < rH 13 o U
H 1 DO 1—1 0) ■p ed 13 •H M B
< ♦J o X 13 10 u h cd u U •H < P o 0
J rt U *J O 3 -a ■p <u QJ H o h •H
a ■P a •H h CO E -a cd > P OJ X S PH P
s M o U o <u < a 1/1 w fn H o •H
w fn o +J n3 ■(-> tNl ■H O ■p !H 13

= 3 O •H u +J w < o t^) M o e 10 u B &. Bh •H h (U n3 X s Xs X QJ QJ C •H o
u U *i Cu > a CO a 1—l 00 K 1—1 s I—i 2 U

H
2
[U >"
s H
(U i—i
KJ H
p. cc 2 rH i—i rH T-H OJ It i—i rg LO rvi CM T-H CN CM O
s o < t-H
1—1

< fH
o J QJ
H 3 fH

QJ
Pi
MH

a tu 13 fH •H
BJ O fH <U JS
PS c; O QJ > 00

i—i o
CO h pi

B >
•H

•H
fH CO ■P

CU o/m o •H QJ Q +J P
►_: PJ UJ U1 B h pi O fH o
23 ci u to 3 QJ ft CO 13 O 1
< o QJ 13 P B B Pk, rt
b- PS o i-H B fH cd cd fH 0) fH

U p, o O h ed fH fH O O rH O
PH o h N QJ ft QJ H fH X i-H X > ci &. -p t-H K P" o fH KH QJ cd u 0)

CJ o c rH w c sn PI o s rH FH QJ 1—1
i—i N o o 1—1 P cd p ^H o PD cd Pi ft

a s o u h p ca u cd cd oi •P cu B ■H
S •H P1 ft X QJ fH B PH pi P PJ
< Z 2 p B P P" QJ C QJ o rH •^ o i—i

o <p o fH ■H ■p QJ P •H h P P u P
1—1 fH •H U fH fH cd u QJ ■P cd s PH fH S
H id X 0) o pi CJ o r-H 1 p QJ
Or i—i W e P1 ■H 00 r^ QJ o p r-H 3 P p>
HH o cd B fH 1 u CO fH ft p cd O CO p
pi ft 13 fH i—i CH a> o w ■H •H p, ■rt Q •H ft u ■H B bo QJ ■—i QJ 13 03 p ^H ^^ bO B
w 00 ci o >•, 13 h U h •H i—1 QJ P< a i—i
UJ h p 0) 43 13 ca pi C/0 PJ PS
Q pj 10 P. •rH fH H e 13 ■H CN -*

■H fl o fH o QJ < pj oa P PJ PJ
ca p> ^H o p 13 PJ •H 13 •H i •H ■H i-H

cd u •H u cd 10 < ca •*D cd pa CQ CQ cd
^o p •H fH QJ P X s LO P P
T-\ en !S P. > C w Q 00 (M cy 00 ^J- 00 Q to

ft
43
U

3fc « * -;;
-P -* o M ir r^ LO o o rH hs D- Ol r^ K)

a. r-H o rH rH rH rH CM "« in tn LO vO sO o~ LO
i—i T-H en O) cr. G1 o\ cn Ol Ol r^ T—i rH in to rH
X CTl rsi CM C-J Ol Ol OJ OJ Ol O) aj CO (N CO rn
LJ Ol

6
<

OJ rJ

LO
OI

rj

ua
Ol

V2
rJ

LO

rJ

OJ

It

to

Lp
O

o

61

A major concern in the emulator design is the exact capabilities of the
Am29116 CPU device. Our information (4,5) spells out in considerable detail
the various functions performed by this device along with its use in several
representative applications. A block diagram of the device is shown in Figure
3 and from this, along with the applications examples, the functional assign-
ment of the 52 pins as shown in Figure 4 was deduced. These assignments are
intended simply to be representative and won't correspond to the actual
assignments to be specified by AMD when the chip specifications are made avail-
able.

Some further discussion of the 16 Am29116 control word inputs is required.
Five of these inputs are required to select one of the 32 general purpose
registers. At least five control inputs are required to specify the ALU and
barrel shifter functions. The balance of five to six pins is required to
control the three muliplexors controlling the input to the ALU along with the
carry, zero detect, status, test, and conditional test multiplexors. Another
input is assumed to select the byte or word mode. This assumes that the
Am29116 has an internal decoder which converts the signals on the four to five
signal pins available into the required number of lines to control the multi-
plexors noted above. In summary, a number of assumptions had to be made
regarding the internal operation of the Am29116. It is believed, however, that
these assumptions are conservative and that the impact on the design of the
emulator microprograms of misconceptions about the control of the Am291I5 will
be minimal. (This has been confirmed by AMD since the completion of this
report.)

Another version of the emulator hardware was designed to incorporate the
Am9511 floating point arithmetic device. This unit provides floating point
and trigonometric calculations to be executed off line. This insures that the
solution of the Fire Control Computer algorithms can be provided equal to or
faster than the present design. Future detailed studies may show that the
solutions do not require the separate Am95Il device. The data is supplied via
the I/O system and the results are returned via the same path and will require
control inputs from the microprocessor control word.

The first phase in the design of the microprocessor emulator was to
specify the bit assignments for the micro control word. Most of the chips
used in the hardware implementation require inputs from the micro control word.
As can be seen from Figure 4, the Am29116 requires 25 control lines; however,
if the register-to-register transfer capability is to be implemented, then
five more control bits must be added to the micro control word, bringing the
total number of control bits assigned to the Am29116 up to 30.

Figure 5 (a and b) shows the format of the micro-instruction control
word, which indicates that 80 bits are required to control the seven major
chip types along with register, multiplexor, and storage read write controls,
and the optional arithmetic unit. It is possible that some economies in the
number of control word bits required could be achieved by use of decoders to
drive the individual control line assignments. Because of restrictions on
the number of chips that can be accomodated on the printed circuit board
containing the emulator, it was decided to not seek economy in micro-instruc-
tion bit counts in favor of reducing the number of chips required to imple-
ment the emulator.

62 a
ASSOCIATES. INC

GMD t> "-

cr o> ^
1LN D «-

i..,L?v '6/ Lti:
L/MCH

IKSTR.
PECOOE

^.

ITT
SF.E

n>-
OET

^

C2-

^^

■.ux

MUX

STATUS
REGISTER

TEST
LOGIC

12

MUX

T
CT

32-WORD X
16-BIT RAM

ADDRESS

16-BIT
LATCH

ZERO
DETECT

FIGURE 3: Ani29116 Chip Architecture

MUX

 a ^Y

-\>
16

16-BIT
ACC .

L_i

t—tttr

16-BIT
D LATCH

MUX

! t

DLE

MUX

BARREL

SHIFTER

ALU

i t

MUX

MUX
,_ o

:— QC

PRIORITY
ENCODER

63

ASSOCUTIS. INC

FIGURE 4: Assumed Am29116 Pin Assignments

Pin Pin
//

Reserved 1 52

vcc

! VCC

2

3

51

50

_^> Not Defined
at Present

GND

GND

4

5

49

48 Y0

Clock Pulse CP 6 47 Yl

atus Register Enable SRE 7 46 Y2

Output Enable OET 8 45 Y3

115 9 44 Y4

114 10 43 Y5

113 11 42 Y6

112

111

12

13

41

40

Y7

Y8

\ Data/10

110 14 39 Y9

19 15 38 Y10

18 16 37 Yll

17 17 36 Y12

16 18 35 Y13

15 19 34 Y14

14 20 33 Y15

13

12

11

21

22

13

32

31

30

Tl

T2

T3

Test

S* Enable

io :

OLE : .5

29

28

T4

CT Data Cor id. Code Output

Output Y Bus Enable 3EY 2 6

64

27 IEN In] 3ut Enable

1 1 a
ASSOCIATES. INC.

.Bit a Chip # Pin Name Funct ion
0
1
2

DO

3
4

Shared Control Lines

5
6 Qontrol Memory ADDH
7
8

I/O Branch ADDR

9
10
11
-2

Am2910 nn
10

13
14 2910 Control Input

15
16
17
18
19
20
21
22

(

13
PL Pipeline ADDfi Enable
VECT Int. VECT Promenable
.CCEN Cond. Code Enable
MAP Mapping. PROM CTRL
CI Carry In
RLD Register Load
OE Output Enable

23
24
25
26
27
28
29 Ain2904

EZ
EN

Condition Codes EC
EOVR
CEN Enable Miriro Status Register
CEM Enable Machine Status Register
10

30
51 2904 Control Input

32 13
33
34
35
36
37
38
59

Data Path

Cohtrol
Lines

IR Register Control
Data Bus Transceiver Control
Cond. Code MUX
ALternate Register Addr. MUX
Mem. Write
Mem. Read
Fetch Cycle

FIGURE 5a: Micro - instruction Word Layout

65

a
ASSOCIATES. IMC

Bit i f Chip # Pin- Name Function
40

44
45

49
50

54
55
56
57
58
59
60
61
62
63
64
•65
66
67
68
69

29116

10
Register Select

Lines

115

Con-trol Inputs

I'O
I'l

I'4

Alternate Register
Select Lines

Tl
T2
T3
T4

Test Control
Lines

IEN INSTR Inout Enable
OEY Y Bus Output Enable
DLE Data Latch Enable
GET Output Test Enable
SRE Status Regipter Enable , . ,.

70
71
72
73
74

2914

10

13
Interrupt Control

Lines
IE Instruction Enable

75
76
77
78

2940
10

12

DMA Control
Lines

OEA Output Enable
79

FIGURE 5 b: Micro- instruction Word Layout

66 a
ASSOCIATES. INC

MICROPROCESSOR ARCHITECTURE MAPPING

The next phase in the design of an emulator for the six microprocessors
consists of mapping these architectures onto the emulator hardware. Before
describing this procedure a slight digression is in order to introduce the
concept of the target and host machine as described by Davies (6). The
emulators for the six microprocessors are implemented on the host machine
described in the previous section. The target machines are the six micro-
processors. The machine language instruction set for each microprocessor
along with addressing modes are interpreted on the host machine, i.e.
Am29116, through microprogramming. This can be accomplished through the
generation of microprogrammed interpreters for each of the six target micro-
processor machine instruction sets. These may be simultaneously resident in
the control storage of the host machine or can be individually resident.
Figure 6 pictorially illustrates the target-host machine relationship.

For the hardware architectures of each target machine to be easily
emulated on the host machine requires that certain hardware features be
available in the host machine. The data paths, register sizes and number, in-
ternal data formats, addressing modes, ALU functional operations, and handling
of flag and status conditions must be implementable within the host machine
hardware for all the target machines. Other considerations include execution
times for the ALU and storage units, register transfer rates, and other
functions which take place in the micro-instruction cycle.

Fortunately the Am29116 CPU meets a wide range of hardware requirements
and features a 100 nanosecond micro-instruction cycle along with 32 general
purpose registers and 16-bit data paths. The associated AMD bit slice LSI
components provide great flexibility in meeting a wide range of required host
machine architectures.

The internal architecture, addressing modes, interrupt levels, instruction
repertoire, and I/O characteristics of the six microprocessors to be emulated
are shown in Table II. To map the target machine architecture to the host
machine, it is necessary to assign the registers of the target machine to the
registers of the host machine. In carrying out this procedure an attempt was
made to assign common register function to one register in the Am29116. Speci-
fically, the program counter, stack pointer, index, accumulator, and status
register assignments were made to specific Am29116 registers. Other register
assignments were arbitrary. Since the Am29116 has 32 general purpose registers,
no difficulty was encountered in making the assignments as shown in Table III.

67 a
ASSOCIATES. INC

en
a o u

-r-l u (U e w ^.J w
a B ^> (0 4-1
i-i O »J w
OJ < CtO >>

OJ to
O c^

SB
P

99
00

I
n
t
e
r
p
r
e
t
e
r

*-)
o o

o

u
01
o
3

68

<

c ■U 4-1

■
t

JJ 4J ^-) -H i-«
0
o

*H, -H 4-1 PQ eQ c
03 ca -H ■u

CQ ^3 ^o u <u w CO tJ
\0 ^C ^H -H *H i-f -H 3 QJ s p- ^ ^ vO 1 | CQ 03 03 CQ >

•-5

C

1 1 i-t Vl -vj-

-^ oi — ct: ptf vD m ^D CN OJ
4-1

CO

u
to
a
QJ

\0 i-J
—'-H

U
O

•H
M

K
4 iJ 4-1 u

1-4 -H U 4J 4J ^4
PQ P3 -H -H -W pq 4-1 4J « CQ CQ tq J-l -H t-l

4-1 T3
t 00 v£> vO -H CQ CQ

o QJ
o

2

t --• CO CO CO —<
■^ 1 1 I t 1

CQ

co -• «
CO
00

tn m m to w
0) OJ 0) *U 0)

?-. >-. >. p- >-

01
u

•H
Q

O
•J3U

i OJ >

0)
rH

1

4J ^a
•H -P cd

oc CQ J-l o o 4-1

ttf t 03
CN
CO

rH

O
QJ u

^H <r CNM

rr
O
S"
p^ TS
p QJ

CO tj
"- a

a. v_. •H 4-1 'j-J JJ

« "H -H -H
OJ

SB
.-4 < CQ P3 pq 4-1 4J

VO *H -H 4-1 o i-t \0 ^D vO P3 CQ TH 4J
Q

CN

E
<r

^O | | |
CQ

yq vo
^H r-H 00

o
M m cn CO CO
QJ aj a) QJ cu

^« >^ ?M >-. >4

o CJ
QJ

-O U

a

2 in
CO W 4-1

4-1 4J JJ -H .H 4_j in o

>
rH
a

t-i o •r-i -H -H pa CO -H 4-1 o
CO cp PQ pq pQ 4-1 -H U o o *i o 1 MJ v£) -W CQ -H CO CO

u ■v
U CO 00 1 CO CO -H ^H £30 CQ cq 1 J m m cn cn <n

QJ

s
QJ

O
CO 4-1 CQ

> 1 1 1 1 1 1
CO -H CO

O CO
co r^

OJ QJ QJ QJ QJ >* ^ >- >* >.
o
QJ >

4-> x: *rt •o o-
pq OJ

a.
u
0)

1 00 a. to
CN 1 ■>-> 4J -U to < o
CO

1 -H pq 4-1 -H -rH
iJ

X n
o

vD •0 pq
vO C vO VJD |

J-l ^H 4J
-H CQ -H o

^ eg oo ^H —i | CQ pq tocoxcocntncncn
o OJ > 1 lilt

t-H <5 _, _^ --,
vD CN QJQJaJa)<UCJQJQJ

CO ^-4 00 r^. ^.^^^-.^SM^,^ s: OVtJ
QJ .—(

^H
O

OJ
cn
o
a.
u u 4-1 4-1 ,

3 O C c
P-(4-1 U QJ 0

C
o
i-i
(Q
U

•H
tM
-H

G
e
n
e
r
a
l

I
n
d
e
x

A
c
c
u
m
u
l
a

S
t
a
t
u
s

S
t
a
c
k

Pt

P
r
o
g

Ct

r
P
S
W

:u
re

Da
ta

A
d
d
r
e
s
s

C
o
n
t
r
o
l
 2 S

60 QJ QJ
QJ QJ J-. 1-.
K 4-1 4-J T3 <D CJ O

UT3n3ajT)>caj
OUOJOJ-HTJOJ-HH-lQ
ucj-.x-rqc-Htj

QjTHajtuajr-tnjoo
BO M *CI *a B -U D,^H4-J*J

01 aJ-HCCExecJ33
cn u

3
U
4-1

KQMt-^i-iuai—(Ce;<;<;
OJ

1
0>0>

g CQ
U 'ays u o
4-1

W
c
o

r*5

u
4-)

a
a

u
CO
u CO

ca

3

00
B 4-1

<u > 3 OJ CQ u
3
u

CO
CO

QJ

a.

2
H

a

GOCC; D

2
3

CL ■H C
c <

(D
>—i .H O o 4-1 < u t_) ^r ,2

69

—■oa rA^-LAU)i>-C0
ao Cfl
0) a)
Dd 3^

0) 01
u u
Cd oi
Qi cu w CO

r- «- "t- r- ^- t- „

a a;
a H

CO u
^ ,--1
u 11
o as
9 Pri

g

X

-H i>4 QJ
< < U}

o o m

m x >< N

P3 M M KH

X X CO) X m w CM dJ a M a o BQ ca en BS Q

« cri
H H
u b
u "
1) o
a (£
M PH

&| EH =H EH
X X X ^
W WWW

« a^ i; a;
M H H

I—t - a)
X2 a u
a ra cu
o a) c

•H O (1)
rH ■oei ^
a. <D m
P- B l>3 W +3

■=; OJ o o m
4J H fX-H

-p W O, h hD
o >^ B 3 0)
S; CO ©At OS

3
T o
CM
a

^H CN m ^3- m vo r^
p^ Oi CU Pu CU Oi a<
O Ci o o u o u

O >-< CN en <T in vD
00 (J\ ~-i ^^-.^-(^H^^H

O OU OUOUCJJU

H H H H
X X X x
UJ W u u

X
o

■1 « H
H PJ
u H H H N

M XJ x: x x
u CJ w U4 (d w

3 M Q U 33 J
H oi pi a; o:
CO M h-l t-H t-H

<

i

OS
H

ui x x x x

H Qi OS Qi Pi

n
U
2
en < 00

u < u . 1 H < -■: W3

-H CN fi <r m \D r-^. cr^O ^^rMPO-^rm'O

70

ESTIMATE OF EMULATOR MICRO-INSTRUCTION REQUIREMENTS

The design of emulators can be broken down into three major phases
corresponding to the machine language instruction processing procedure. The
procedures followed for each target machine instruction are collectively re-
ferred to as an interpreter which executes on the host machine and makes it
look like the target machine to the user. Each machine instruction interpreta-
tion cycle consists of an instruction fetch phase, an operand fetch cycle, if
required, and an execution phase.

The instruction fetch phase simply issues the address of the next machine
language instruction to be executed to the memory address register and requests a
memory read cycle. Along with this operation the instruction control counter is
incremented by some amount proportional to the length of the machine language
instruction that has been fetched. For variable length instruction formats
this may involve decoding the instruction OPCODE to determine if additional seg-
ments of the machine language instructions must be accessed from memory. The
instruction fetch phase is completed by entering the machine language instruction
into the instruction register (IR).

The data operand access phase is only necessary for those machine language
instructions calling for a memory reference. The entry into this phase is deter-
mined by the fetched instruction OPCODE. For most OPCODES specifying register-
to-register, stack, branch, test, and shift operations, no memory operand fetch
operation is required. The memory access phase is often referred to as the
addressability mode and a wide variety of possibilities exist as shown in Table
II. Direct addressability simply uses an operand address specified in the fetched
machine language instruction to access a data word. Indirect addressing implies
that the operand being accessed is an operand address and this may be repeated
many times. Indexed addressing involves adding a constant contained in a register
to the address specified in the machine language instruction and a relative
address is simply an offset of constant value added to the machine language
instruction address operand.

Registers are often referred to as containing data operand addresses and
these are used along with increment and decrement operations to cycle through
sequences of data intermixed with instructions. Each target machine emulator
must provide an implementation of the addressability modes of the target machine.
If these involve many possiblities the corresponding emulator micro-instruction
count can be substantial.

The final phase of interpreting a machine language instruction is the
execution of the functions specified by the OPCODE. It is assumed at this point
that all operand data required is stored in registers and some arithmetic or
logical function is to be executed on this data. The result of this execution
is stored in a specified destination register or an accumulator or stack as
dictated by the machine internal architecture. Typically for simple binary infix
operators, e.g. ADD, SUBT, AND, OR, XOR, this operational phase requires from
three to four micro-instruction systems. Thus for a target machine with fewer
than 100 different machine language instructions the number of micro-instructions
to implement an interpreter lies in the 150 to 300 range. Adding the micro-in-
structions required to implement the data operand addressability and instruction
fetch functions brings the total micro-instruction count and corresponding PROM
capacity requirements to the 300 to 400 80-bit control words.

71 a
ASSOCIATES. IMC

The overall emulator operational flow is shown in Figure 7. As can be
seen the instruction fetch and operand access cycle is common to each machine
language instruction. The selection of the approporiate micro-instruction se-
quence corresponding to the 8-bit OPCODE is accomplished via an 8X32 mapping
PROM (see Figure 2a). The output of the PROM gives the ROM address of the micro-
instruction sequence. Each of these sequences is terminated with a branch micro-
operation back to the beginning of the instruction fetch phase.

The specific estimate of number of micro-instructions required for the
six emulators is shown in Table IV. The approach in making these estimates was
conservative to allow for the many assumptions that were made in this design
effort. The Am29116 CPU chip has many powerful internal features including the
capability of executing internal register-to-register operations in one micro-
instruction cycle (100 nanoseconds). While this feature was exploited in the
emulator design, a more conservative approach was taken on other functional
procedures.

A major problem with the design of the emulators is the lack of knowledge
of the exact internal operation of the Am29116. This is reflected frequently
in assuming two micro-instruction cycles instead of one. For example, an added
cycle is assumed for shift operations although these are very likely executable
in conjunction with ALU operations.

To illustrate the emulator design in more detail, detailed micro-instruc-
tion sequences for the Intel 8080(85) and Motorola 6802 are shown in Figures 8
and 9, respectively for the fetch, addressability mode, and a sample set of
functional operations.

72 s
ASSOCIATES. INC.

o

05 ss vy

<
H <:

j —f ^ V ?= -(^ Vs:

^—^ X

PS
11
H
u M
[X| n o H
Bl 11 b
H b] Wi IT
en a Uj H

X gs li; t/) iw
c> H u c> a H
F-< o M S5

Ed q < H
2: a u* F-i Cd
11 : 1 p > H M

K OS « n J
H UJ H o i-'

t^. ^ en H w w ■91
LJ EJ ?: X 7", w X 5?!
H OS H H ^ u W

rHr-jm-^-mvc-r^co

H N

e> o
Pi C/3

Crf Ci H
M « < HJ
H H M <:
W CG Q ^H
M t-l UJ U
O O S U
UJ W S G-
oi pi t-t en

o
M H
H M

H u

I
z

i

tj en
H W
w ><

■ S3
o

c
2

2
CO

73

2
5

o

o o

H

O

o

Q
OS
O

o <
O

o
H

o

<

o
H

O
D

EH

O

O

H

CO
w

5
O
o

o
H

O 5
ce

a
H
O

2=
o

a

<

D

o

o
CM
B

o s H
H

O

O

o

o
M

O

O

o

3 o
<

D
si-
T

to.

LA

O O

00

00
f\J

o

03

IfN

0^

c EH
CQ

O <

SO

o
at

tC

o
Co

o

CM

O

CT

O

o
o

o

ITS

CO

CM

^D

O
10

o
oj

lA

\D

0>

tD

'£>

«-

^3—

OJ

_. ^" .-

o

^

fH
a>

IK
to c
c!

EH

a
-P

O
c

O

vC

d- -p ra
c

•H
JJ

o
J2
a
c
0

•r4
-P

-j- oj

OJ

o
>-.

C5 -p ^ ■H
O f-S
c •H
£ ^5
r: a

^H B
rH ta
O ^5 0)
O o (4
CO 4J T)

.^-1 0) TS
*:" Ct <

S M
H

2
O

O IrH •=:
En IE S

" ■ CM

O" §

i O-Sv-"
+ TT^

Of ;.u-l r ^-
w a + + tH a n C^CYH 1

•d
H ta

X

Wool
&.££££

■^

ffi XJ

f CJ
0) K Q

S
t Qj a

PH o IT B
pq n > q +
FH £ S.(V

a!

^>

Tq-

1-3

CM

o
H

-^

o
3
O
H
Cti

3
■H

o

m
d

•H
O

O

OJ
O
03

o
U
o
•p o
E

co

(D
u
3
bQ

•H

CD

>>
m

'tc\
it

■C\J

cti
0)

MM

fb 1 a
O 0)

■d
PH ! o I ctf

T OK. I T g I g
OPO: o Soy
PHSS; I CM S PH S

08

0)

M

®2i w

it 11

T
ri
cd
ox;

cy «o
A CC! . -a!

(£^111 Eacyoe s r

Ml

M, + 'I

-TIT

O"
m to.
7J r- M

^t H
WO1

T

75

4)

f-1

s
g

~U]
■-1 J

Q
CD -a *

3 OS D.

o 1 i 3
U i) (J
cb 2 S

cz u cc
Sm M

o
CO

0>

n. S
^ ^

■J p
X u u

ex r r < o 1
o

EMULATOR DESIGN COST ESTIMATES

Accurate cost estimation procedures have long been a major obstacle to
management of software development projects. The uncertainties associated with
conventional software cost estimation are at least as prevalent in the estimation
of microprogramming costs. Writing of microprograms is generally considered one
of the most tedious and error-prone procedures in the development of computer
systems. There is little or no data available in making such a cost estimate
and computer manufacturers, who might have such data, regard it as highly
proprietary.

The closest analogy to conventional software generation for use as a
measure of the cost of microprogramming would be systems programming. This
category of software generation is generally considered from three to five times
more difficult than conventional programming. Further, it is frequently required
that assembly language rather than a high-level programming language be used to
carry out systems programming which further complicates the task. System pro-
gramming production rates (7,8) have been estimated to be one-third instruction
per programmer hour. This includes design, coding, implementation, validation
and documentation. In this estimate, microprogrammer productivity will be
assumed to range from one-third to one-sixth micro-instruction per hour. The
former rate will be associated with portions of the emulator that are straight-
forward to generate. The latter rate will be assumed for the more difficult
portions of the emulator. Three catagories of difficulty are defined: easy,
medium and hard. Based on an hourly cost of a microprogrammer of $33.00/hr.,
this gives a cost of each micro-instruction as: easy — $100.00, medium —
$150.00, and hard — $200.00. Each emulator is broken down into nine categories
and a difficulty assignment is made to each category. In Table V, the cost
estimate for each emulator is shown along with a breakdown of costs by each of
the nine categories as shown in Table V.

In addition to the generation of the microprograms for each emulator, it
is also necessary to consider the support tools which will be required. These
include a micro-assembler program, a micro-simulator program, and the documenta-
tion support system. Such systems are relatively straightforward to design and
it will be assumed that they are written in a high-level programming language
and execute on commercially available computers, e.g. IBM 370. A cost estimate
for both a micro-assembler and simulator is included in the cost estimates
shown in Table V. This leads to a cost of generating all emulators including
support tools of $350,000.

If the MIS language were to be used as the only target machine language,
as proposed elsewhere in this study, a single but more complex interpreter would
be required. Referring to Figure 6, the six target machine instruction sets
shown on the left would coalesce into the MIS language and the six interpreters
shown in the middle could be replaced by one. This would reduce the size of
ROM required to store the interpreters by as much as 70 to 80 percent and re-
quire less space on the ROM chip carrier.

The feasibility of designing a single microprogrammed interpreter to
execute on the host machine shown in Figure 6 for the MIS language wasn't part
of our study effort. Only preliminary cost estimates could be made and these
indicate that this interpreter would be more complex than any of the six inter-
preters covered in this study. A conservative estimate would be from $60,000 to
$80,000 and with the support software would lead to a total design cost for ^+

77

ASSOCIATES, INC

n

s

pa

■p
n
o
o

o
-p «
H
3
E

W

En

p O O o o O o O
O o lA o o o lA

-p 4a 13 LT, kD lA o st U3

fCN o r" W o ^D 10
3 O * lA «!■ t\J LA lA 3F
s OJ

w «» *>

a 8
-j

tn 0
O 3 s
h-y
2 fl
i o
3 (-1

IA C^ cr> tA OJ (N r^
O LA c^ 0> CO LA C3^ RS K> rvj r" fA AJ IN

& o t"
•H
5;

^\ r1
rA o

lA 00 sj- o
03 t" cr>

OJ v—' «; < c^
o
CO

o ? DO o
CO o ■^ o PM
O ON * g «

0 CO CM LA s M
B

■H
tf ^2
O ' •*
a< H
g •»

o h^ S
«! pq a sa a -

O O O o o O o O o O O o O
■p O o O o o LA o o o LA O o LA

o
AJ SA LA o CO rA ^ ^L

o U5 5 o \0

o LA CO rA vO r* C^ r- d- CO LD o Q VD
rA V- lA T" T" rA LD

AJ
lA LA

tA
** =» I»

03
a

^1 u fH
■p
co

M 4J 0) O o
oo r-H P o

O -O o d
u h A) rA o- o a> cr\ IN C\J en [>- fH E fHH rH
0) ffi LA CO lA so & LA C- lA C^ O <D o 3 cd * .s tA r" r^ ?" r-

!*■ [>- • H LO •H S p
E p

s -9
T" S m E -rH o

<; a EH

_ 1 1

M i-H
rH 0! JH
•H >

73^

M w S w a s D3 ua ^ .3

2
■p ^H

t—)
cd
P 1

o O
r-H

id n
>5

■P
o

EH § oo o
p- \ o 3 •H EJ O O 0

>5
EH o

H
o

O rH
■H

^5- • • •
^^ c o o

•iH h c C XI CO O lA p
rH P Vn •H 3 a ^ ^-^ OJ
cs a) rH u -U (.1 n ^t -_-» <;*
c E rt EH jd a 3 i-H ra rH O o JZ! o o u O o 0) <D O ■H +J -H ctf a a 3 fH o h > M S s +J •rA t: +J a ■^ HJ ,C CO X) QJ fH o U o rt fH >! <a 3 ■H XI h5 <u 1 < r^ =i a ro V CQ ^ < s

H O
rH P.
._! f-

78 x a

emulator as less than $200,000. The principle concern here is the requirement
to provide interpretation capability for a set of special operation codes re-
quired to adapt the MIS language to each of the MP systems.

A final comment pertains to the design process of emulators. The first
phase deals with the design of the emulator. Part of this activity, in a
preliminary way, has been carried out in the preparation of this report.

The next step is to actually generate the microcode required for each
emulator. This assumes the prior availability of a micro-assembler and some
means of recording design levels, changes thereto, and release of final designs
to a manufacturing organization.

As portions of the emulator are generated, a sequence of more encompass-
ing simulations are required to verify the performance of the emulator and provide
a means to detect and correct errors in design.

Finally, the installation and check-out of the emulator provides the
verification of operational performance. This requires the replacement of the
target machine by the host machine and its emulator and the software generated
for the target machine is used to exercise the emulator system. These are
complicated procedures and require highly qualified personnel to carry out the
necessary verification steps. The cost estimates for generating each micro-in-
struction required for each emulator are assumed to contain allowances for all
these steps in the design, generation, and installation of the emulator. To be
conservative, it would be wise to add a 25 percent contingency factor to account
for the complexity of generating microprograms and the complicated procedures
required to verify their performance as replacements for the target machine.

One of the leading contributors to the cost of emulators is the tedious
procedure required to generate individual micro-instructions. A tool in common
use in generally conventional software is the high-level programming language.
The increased number of machine language instructions required to represent a
given algorithm as opposed to the same algorithm expressed in assembly language
for a given target machine is felt to be a small sacrifice to achieve greatly
improved programmer productivity. The same argument could hold for generating
microprograms and this possibility is the topic of the next section of this report.

79

a
ASSOCIATES. INC.

USE OF HIGH LEVEL PROGRAMMING LANGUAGE TO GENERATE EMULATORS

Through a series of research contract efforts (9, 10), it has been
demonstrated that a high level language (HLL), such as PASCAL, can be compiled
into a non-machine dependent intermediate language format and subsequently
translated into either machine language to execute on a target machine or micro-
code to emulate the target machine on a universal host machine. Both of these
capabilities have applications to simplifying the software and hardware
structure of the set of microprocessors currently installed in the AAH Fire
Control System.

By use of modern compiler development techniques referred to as
translator writing systems (TWS), it is relatively straightforward and inex-
pensive to develop prototype compilers for a wide range of HLL input languages
and to produce intermediate or machine language representations of algorithms
expressed in the HLL. .Several compilers have been developed which produce an
intermediate instruction stream representation referred to as a QUADRUPLE.
This machine independent instruction format consists of an operation part, two
source operand addresses, and a result operand address. It is a relatively
straightforward procedure to translate this format into various machine
language representations or directly into microcode. The latter representation
must be loaded into a special writable micro-control word storage and accessed
through procedures within the host machine's control circuitry. Many modern
day minicomputers, e.g. DEC VAX 11/780, HP 1000, Interdata 8/32, support the
"user microprogram" concept (11, 12) and provide extra writable control
storage, micro-assemblers, and simulators to assist in developing microcode.
In spite of the fact that microprogramming critical software kernals, i.e.
program segments executed frequently, can improve system performance by
factors of up to 10, "user microprogramming" facilities aren't used very often.
The primary obstacle is the difficulty encountered in writing and debugging
microprograms.

With the advent of the HLL compilers that can generate microprograms as
output, much of the manual difficulty of generating microprograms is eliminated.
This escape from the tedium of writing microprograms is not accomplished without
some loss in the efficiency of microcode produced by a compiler as opposed to
hand generated microcode. To date, a detailed study of HLL to microcode com-
piler performance hasn't been tested against hand generated microcode. Research
exploring this question is currently underway.

A further question arises as to the utility of using an HLL microcode
compiler to generate emulators. A major question concerns the ability of an
HLL to concisely express the type of actions described by an interpreter at
the register transfer level. It is quite possible that a special HLL may be
required and this issue certainly commands some in-depth investigation as a
fundamental research issue in emulator design.

To further consider how the techniques described above could be applied
to the activity described in this report, two approaches are suggested. The
first would be to use the HLL to generate a machine independent representation of
the algorithms required by the various weapons and avionics control systems.
Either the QUADRUPLE as noted above or the MIS language would be candidate
machine independent representations. In either case this intermediate represen-
tation would then be translated directly into microcoHed interoreters to run^Qn

80

ASSOCIATES, INC.

the host emulator hardware.

The second approach would be to generate the target machine language
programs from the machine independent representation of the operational
algorithm. This would preserve the existing microprocessor hardware. Again
a translator for each target machine would be necessary and would still re-
quire maintenance of each target machine language although it would eliminate
having to maintain programmers who were competent to program in these languages.

The impact of the HLL compiler alternative on the cost of generating
emulators is difficult to assess. The cost impact comes in two areas. The
first is a reduction in the cost of generating the emulators while the second,
and perhaps the most important, is the impact on the maintenance cost of the
emulators. These maintenance costs weren't addressed in this study. In terms
of the initial cost estimates of generating the six emulators, which was esti-
mated above to be $350,000.00, the use of a HLL compiler would probably not
reduce this figure by much. This is because the costs of developing the HLL
compiler and evaluating its performance have large R&D components. Since
these costs are hard to estimate, the overall costs of emulator development
are not easily derived. Again, as noted above, the long-range impact of this
design alternative could be very significant. Further research and life
cycle cost studies must be carried out to demonstrate this conclusion.

In comparing the two approaches, several issues must be considered.
Using a single HLL to express all the weapons system functions would be
extremely desirable especially in the software maintenance phase because
programmers would only have to be skilled in one language instead of six or
so much more complex machine languages. The output of the compiler, whether
target machine languages or microcode for a universal emulator, would only
have to be understood by a few "expert" programmers who would deal with
compiler "bugs" and target machine problems. The choice of an intermediate
format, i.e. QUADRUPLES or MIS, must be carefully explored. Again, only one
language definition is required to be documented and maintained and the main
issue would be efficiency of translation of this intermediate format into
the host machine microcode or machine language. As presently constituted}
the support of software and hardware for the AAH Fire Control System is
going to require many parallel activities involving documentation and main-
tenance of skills in several machine language and hardware systems. Re-
placement of these multiple software-hardware maintenance systems by one
universal emulator and HLL support software system seems far preferable both
in terms of life cycle costs and training and retention of the necessary
skilled personnel. Clearly a one-time cost of switching to this new approach
would have to be written off but the longer-term economic and personnel
requirements appear to more than compensate for the short-term conversion
costs.

81

a
ASSOCIATES, INC.

CONCLUSIONS AND SUMMARY

This section will present a number of conclusions derived from the
emulator feasibility and cost estimate study along with some comments and
suggestions for future investigations. The feasibility study was of short
duration and there was a serious lack of information on one of the target
machines, 54LS 181, as is evidenced by the gap in Tables II, III, IV, and V.
It is believed, however, that the central theme of the study, i.e., can
emulators be designed for the six target machines using AMD bit slice LSI
components, has clearly been answered in the affirmative.

The specific conclusions of the emulator feasibility study are listed
below:

A. A host machine can be designed using AMD bit slice
components along with the Am29116 CPU which can support
emulators of the six target machines.

B. Emulators for the six target machines can be designed
employing an 80-bit (approximately) micro-control word.
The emulators have been estimated to require from 300 to
400 micro-instructions.

C. The micro-instructions for the six emulators could be
stored in a ROM of from 2000 to 4000 words (80-bit).

D. The generation of the micro-instructions to interpret
the MIS language on the host machine could lead to a 50%
reduction in the cost of emulating the six types of
target machines. Further study is required to refine
this estimate.

E. The cost of generating the emulators would be $250,000.00
plus the cost of developing a micro-assembler and simula-
tion support tools. These are estimated to cost
$100,000.00.

F. The cost of generating and maintaining the emulators could
be reduced significantly if they were expressed in terms
of a high level language and then compiled into the
micro-instructions required to interpret the target
machine language instructions.

The findings of this study are preliminary in nature and much more
detailed information about the machine language instruction sets and internal
register layouts (especially for target machines D, K, and F) will be required
to insure that adequate facilities are available in the proposed emulator
hardware to accomodate this equipment.

While it is believed that the 100-nanosecond internal processing speed
of the Am29116 is ample to provide target machine language instruction execu-
tion times equal to or shorter than the equivalent times associated with the
six microprocessors, this must be firmly established by timing studies. It
also may be possible to reduce the width of the control word from the present
80-bit size. This would require careful analysis of what control lines are
in the same compatability class, i.e., are never energized in the same control

82 0
ASSOCIATES. INC.

word, and introduce decoding switches to reduce the number of control word

bits required to drive these lines.

83

^
ASSOCIATES. INC.

REFERENCES

1. Brachman, R. J. , "Commonality Study of Computer Software Resources in
AAH," Report 79-04, Section 104, R. J. Brachman Associates, Inc.

2. Brachman, R. J., "Commonality Study of Computer Hardware Resources in the
AAH," Report 79-105, R. J. Brachman Associates, Inc.

3. Kelly, S. A. , et. al., "Master Instruction Set," R. J. Brachman Associates,
Inc., December '79.

4. Harmon, B., "Bipolar Processor Makes a Powerful 16-Bit Microprogrammable
Controller," Electronic Design, 21, October 11, 1979.

5. Harmon, B., Miller, W. K., "A High-Performance 16-Bit Bipolar Microprocessor
— The AM29116," Advanced Micro Devices, Sunnyvale, CA 94086.

5. Davies, P. M., "Readings in Microprogramming," IBM Systems Journal, Vol. 11
(1972), pp. 16-40.

7. Daly, E. B., "Organizing For Successful Software Development," Datamation,
■ Vol. 25, No. 14, December 1979, pp. 107-120.

8. Putnam, L. H., Fitzsimmons, A., "Estimating Software Costs," Part I, Part II
and Part III, Datamation, September, October, and December 1979.

Q. Merwin, R. E., "Development of Experimental Compilers to Generate Emulators
for the BMD DDP Test Bed from High Level Languages," Final Report, 1 April

■ 1979, U.S. Army BMDATC Contract No. DASG60-78-C-0115.

10. "PASCAL to Microcode Compiler Development," Final Report, September 1979, TRW,
Inc., Subcontract No. HO 7868AF9S.

11. Hewlett Packard, "Microporgramming 2IMS Computers, Operating and Reference
Manual," Manual No. 02108-90008, August 1974.

12. Interdata, "Model 8/32 Micro-Instruction Reference Manual," Publication No.
29-438, 1975.

84 a
ASSOCIATES. INC

APPENDIX B:

REPORT OF A TASK STUDY

ON

AUTOMATIC TRANSLATION OF PROGRAMS

FROM ONE COMPUTER TO ANOTHER

FOR THE

U.S. ARMY ADVANCED ATTACK HELICOPTER

FIRE CONTROL SYSTEMS

INVESTIGATORS: DR. NOAH S. PRYWES

CIHAN TINAZTEPE

KANG-SEN LU

85 a
ASSOCIATES. INC

This page was left blank intentionally,

86 a
ASSOCIATES. INC

APPENDIX B

REPORT OF A TASK STUDY
ON

AUTOMATIC TRANSLATION OF PROGRAMS FROM ONE COMPUTER TO ANOTHER
IN

U.S. ARMY ADVANCED ATTACK HELICOPTER (AAH) FIRE CONTROL SYSTEMS

1. SUMMARY OF PROBLEM AND ALTERNATIVE APPROACHES

This study of automatic translation of computer programs
from one computer to another was conducted in the context of the
Advanced Attack Helicopter (AAH) Fire Control Subsystem. Pres-
ently the Fire Control System is designed using 14 embedded
microprocessors of 9 different types, each programmed to perform
an individual task. These programs have been developed in the
assembly languages for the respective microprocessors. They
amount cumulatively to approximately 200,000 lines of assembly
language code. The large number of computer types and computing
languages would make future maintenance, modifications and im-
provements very difficult and expensive. The U.S. Army is con-
sidering replacement of these embedded microprocessors by a
single microprocessor. We refer to it in the following as the
standard-microprocessor. Its instruction set is referred to as
the master-instruction-set. Reprogramming of the respective
programs, manually, using the master instruction set, would also
require extensive testing for verification of the operation of
the entire system, as very likely there will be differences due
to the reprogramming effort.

Two approaches have been envisaged to solving this prob-
lem. The first approach, which is a subject of a separate study-
task, is that of emulation; namely incorporating in the standard
microprocessor micro code for the instructions of the respective
microprocessors, and then dirfectly executing the original prog-
rams. We will not refer to this approach as it is the subject
of a separate study task.

The other approach consists of creating a software sys-
tem which will automatically translate the source assembly
language programs of the respective microprocessors into the
standard-microprocessor master-instruction-set language.

87

sl^.
ASSOCIATES. INC.

The present study is concerned with using an automatic
translation system to generate programs, in the language of the
master-instruction-set, based on the assembly language programs
of the original respective microprocessors.

The requirements of such translation are quite severe,
as follows:

1) An all automatic translation process should apply to
the overwhelming majority of the source programs (say about 90%).
Otherwise if extensive manual intervention is required then the
possibility of introducing errors arises and a thorough verifi-
cation of the system will still be needed.

2) The automatically generated object programs must be
highly efficient in use of memory space as well as in execution
time so that the replacement does not contradict real-time rules.

It is assumed however that the standard-microprocessor
is considerably more powerful than the microprocessors that it
replaces.

3) In the process of translation it would be necessary
to generate also documentation for the programs, to facilitate
future maintenance activity. It is assumed that the source
programs are presently not adequately documented.

Figure 1 is a schematic diagram of the information flow
in the translation of a source assembly language program, for
a respective microprocessor, into an object standard-
microprocessor machine language program, with program documenta-
tion being generated as a by-product. Figure 1 portrays two
alternative approaches.

The input to the translation process is an individual
source assembly language program for a respective microprocessor
shown on the left of Figure 1. The first step is common to both
alternatives. It consists of a translator that accepts the
source assembly language, program for any one of the nine dif-
ferent microprocessor types, and produces a uni form-tabular-
representation for the respective program. For each source
code statement there would be an entry in the table indentifying
the operation, the operands and their addressing modes, the
locations of instructions and data in the original microprocessor
and the registers that are effected by the operation (e.g. over-
flow etc.). As shown in Figure 1, the translator would reference
a specification of each of the respective source assembly
languages in the translation process.

Alternative I consists of translation of the uniform-
tabular-representation of the program into a program using the

Iji
ASSOCIATES. IMC.

the master-instruction-set language. Alternative II consists of
a "reverse complex" to translate the uniform-tabular-representa-
tion into a High Level Language, such as Fortran. Both
alternatives require employing complex software methods. Alter-
native II would generate superior documentation of the program
and will be completely machine independent. However Alternative
II is more difficult to achieve due to the machine independence
related restrictions existing in a High Level Language. In both
alternatives, the programs that are generated by the translators
must be further processed by additional language processors, an
assembler in Alternative I and a compiler in Alternative II. to
produce the standard micro-computer language program.

The conclusions and recommendation of the study are
briefly stated in Section 2. The remainder of the report dis-
cusses the process of Alternative I in Figure 1. Section 3
describes the translator from the source assembly language to
a uniform-tabular-representation. Section 4 concludes with the
discussion of the translator from the uniform-tabular-
representation to the master-instruction-set language. To
illustrate the operation of the translator, we have designed a
translator for a subset of the instruction set of the M6 800
microprocessor into the Z80 microprocessor. The assembler for
the standard-microprocessor shown in Figure 1 is not discussed
here as it is assumed to be available from the manufacturer of
the standard microprocessor. As will be indicated the design
of an Alternative II system poses several very difficult prob-
lems , in addition to the problem areas inherent in Alternative
I which are common to both alternatives. This is one of the
reasons why we recommend postponing Alternative II and why it
is not discussed in detail in this report.

2. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

This section discusses the advantages, disadvantages and
risks associated with the two alternatives and the individual
processes portrayed in Figure 1. While advantages and disad-
vantages can be stated in terms of the functions of the respect-
ive processes, risks are associated with major problems that
much be solved and with limitations that may have to be imposed
on the ability of the system to translate certain classes of
assembly programs. As already indicated previously, at best
we expect that the system would be able to translate the great
majority of assembly programs. There will however, always be
some programs that it would be impossible to translate fully
automatically. The risks are also associated with estimates for
the technical manpower that would be required for solving cer-
tain problems.

We foresee two advantages of Alternative II over

89 0
ASSOCIATES, IMC.

0)
>

•H
4J
10
a
u
<u

>
-H
-P
ra
c
U
Q)
+J

m
l o a
\ t- ^

< o \- rf
•2 8.
Ml
i O
3a? l&

O ,0
1

^_ ulviQ-

m < <

UJ O O

< JO. -

90

Alternative I as follows:

1) The High Level Language would represent a better
documentation of the program then would be possible to achieve
based on the master-instruction-set assembly-language. This is
conditional however on success in generating a High Level Lan-
guage program that is considerably shorter than the equivalent
source assembly program, which is indeed a very difficult task.
The advantage in documentation is derived from the fact that,
a program is described in a High Level Language on a much higher
level, omitting much detail that is concerned with machine level
implementation of the program. Therefore it would be easier to
understand and also to modify it.

2) The representation of the assembly language program
by a High Level Language program eliminates all the machine de-
pendent aspects of the implementation. Therefore it would be
readily possible to transport the respective program to run on
other machines in the future. While this is not an immediate
requirement it may prove valueable in the long run.

The machine independence achieved in the High Level
Language is also the source of major difficulties in accomplish-
ing the translation. It is likely that only a greatly restrict-
ed class of programs can be "reversed compiled" as compared with
Alternative I. The designers of High Level Languages have inten-
tionally eliminated all features in the languages that would
allow specification of physical implementation of the respective
computations. For instance, the following operations, which
are used by assembly language programmers, cannot be stated in a
High Level Language.

1) High Level Language programming distinguishes between
the program and the data areas in the memory and does not allow
the specifying of execution of program instructions in the data
area.

2) It is not possible to specify in a High Level Lan-
guage computing physical addresses, of the instructions or the
data. Indexing is allowed in the data area only. Thus in many
instances the use of index registers, indirect addressing and
other computing of addresses, widely used in an assembly lan-
guage, cannot be expressed in a High Level Language.

3) The methodology used in the arithmetic unit of a
specific computer and the conditions and flags used in arithmetic
operations cannot be referenced in a High Level Language (except
through interpretation of these operations).

4) A High Level Language imposes limitations on

91 a
ASSOCIATES. IMC

operations on variables with different data types, while an
assembly language programmer frequently can get around such
restrictions.

5) Relative position of variables cannot be stated in a
High Level Language. Therefore memory in the standard-computer
cannot be allocated similar to the source microprocessor.

The problems posed by these restrictions are quite
severe. It would require that the translator extract the high
level concept of the computation from the source assembly pro-
gram. Additional information, may be required, which would have
to be prepared manually and submitted to the reverse compiler.

In addition to the above problem areas the design of an
Alternative II system includes all the envisaged problems in
Alternative I. Alternative I therefore is far less risky than
Alternative II.

We recommend implementing Alternative I first. Based
on the experience gained in the development of an Alternative I
system it would be possible to assess whether an Alternative II
system should be further explored. We will focus here, there-
fore, on Alternative I only.

In order to further reduce the risks in Alternative I we
recommend that the design of the system utilize to the fullest
possible extent the similarities in arithmetic operations and
in memory allocation between each of the nine microprocessors
used in the AAH Fire Control System and the standard-
microprocessor that would replace them. The arithmetic opera-
tions and number systems of each source microprocessor will be
modelled in the standard-microprocessor. Further, similar
structures of the memory program and data areas, of the source
and object programs, would be retained as closely as possible,
even if this would reduce the efficiency of the object program.
Otherwise the task of translation would be far more difficult
and may involve much larger inefficiencies. This would, how-
ever, be facilitated by the greater power of the standard-
microprocessor and its master-instruction-set.

Further, we will exclude from the
grams, that would be translatable, those
porate operations on locations, either in
areas, where these locations serve as ope
execute instructions. However we will al
limited following case. The execute or j
tions located in the data area will be ac
assembly language representation of these
by the user, in addition to the source as

92

class of assembly pro-
programs which incor-
the program or data

rands of other jump or
low the above in the
ump ooeration instruc-
cepted provided the
locations is supplied

sembly program.

a
ASSOCIATES. IMC

Referring again to Figure 1, Alternative I is divided
into two processes:

1) A translator from the source assembly language of a
particular microprocessor into a uniform-tabular-representation
of the program.

2) A translator from the uniform tabular presentation of
the source program into an assembly language program utilizing
the master-instruction-sets.

The first of these processes represents well known
methodology. It can be based on similar systems developed to
date with which there has been considerable experience.^1'2)
Thus the design and implementation of this process involves
very little risk, if any at all. Systems of this type exist
presently and can be readily adapted. One system of this type,^1)
developed and used for several years at the University of
Pennsylvania, is described in Section 3 and an example of design
of a translator form M6800 to the Z80 microprocessors is given
in an appendix. The work in implementing the process would con-
sist primarily of specifying the syntax and some semantics of
the nine microprocessors. We estimate that this effort would
require approximately 2 man years of attention by senior computer
software specialists over a period of six to nine months, plus
computer time.

The second process described above represents greater
risks. We have surveyed the published technical literature in
this area(1 through 77and have found relatively little directly
relevant previous experience. Based on the problems that we
have studied, our conclusion is that the corresponding process
is practical and can be implemented. To locate and investigate
the problems that may arise we designed in detail a system that
translates a subset of the instructions at the M6 800 micropro-
cessor into Z80 instructions, which is reported in the appendix.
The documentation produced by this process would be similar to
that produced by several commercial assembly language automated
flowcharting systems.^

Finally, in real-time sensitive programs, the execution
time of the program by the standard-microprocessor will be
modelled to verify that execution time will not exceed the time
required by the source microprocessor. The standard-
microprocessor will be generally faster than the source micro-
processors. It is assumed that the system may be sensitive to
exceeding maximum execution times but not sensitive to minimum
execution times.'8)

The development period is estimated at 9-12 months. It

93 a
ASSOCIATES. IMC

will require 3 man years of effort plus the needed computer time
A major portion of this effort will be devoted to defining the
correspondence of the hardware between each one of the source
microprocessors and the standard microprocessor. These defini-
tions will be referenced in the translation process (see Figure
1) .

Assuming that these two processes are implemented one
following the other, the total required development time would
be between 1-1/4 to 1-3/4 years at the cost of approximately 5
man years of effort plus the needed computer time.

3. TRANSLATION OF ASSEMBLY LANGUAGE PROGRAMS OF 9 MICROPROCESSORS
INTO A UNIFORM-TABULAR-REPRESENTATION

The first translation process analyzes the syntax and
local semantics of individual statements in an assembly language
program of any one of the nine source microprocessors and pro-
duces a uniform-tabular representation of the program. It is
based on advanced state-of-the-art syntax analysis techniques
which have proved to be invaluable. Specifically, a parser pro-
gram for these assembly languages will be generated automatical-
ly. In addition to checking the statements for syntactic and
some semantic errors, the generated program will also store the
statements in a tabular form for later processing.

This capability exists i
systems. (-1-'2) Following is a de
Syntax Analysis Program Generate
University of Pennsylvania.^
for the source assembly language
by the SAPG. As shown in Figure
Analysis Program (SAP) for analy
ments, based on a specification
pressed in the EBNF/WSC (Extende
Subroutine Calls) meta language.

n a number of state-of-the-art
scription of such a system, the
r (SAPG) developed at the
The Syntax Analysis Program (SAP)
s will be generated automatically
2, the SAPG produces the Syntax

zing assembly language state-
of each assembly language ex-
d Backus Normal Form with

The EBNF/WSC includes the traditional cone
BNF uses sequences of characters enclosed in angle
called non-terminals to give names to grammatical
which substitutions may be made. BNF consists of
production rules of the form "A::=B". "A" is a si
terminal symbol and "B" is one or more alternative
terminal or non-terminal symbols that can be subst
The alternatives are separated by the meta-symbol
facilitate language description, BNF was extended
two well-known meta-symbols: [] representing opti
[]* representing zero or more repetitions.

epts of BNF.
-brackets < >
units, for
a series of
ngle non-
sequences of

ituted for A.
" | " . To
to EBNF with
onality and

The specification of the source assembly language that

94

ASSOCIATES. INC

MODEL

Statements

u

SAPG

\ i

■w

SAP

Syntax Diagnostics and

Cross-Reference Report

Encoded and Stored
Statements

Figure 2

Block Diagram of SAPG and SAP

95

a -<

ASSOCIATES. IMC.

Repetition zero or more times is effected by generating a GO TO
to the statement testing for recognition. Subroutine names em-
bedded in the EBNF/WSC get a CALL generated for them in place.
Calls to other subroutines not explicit in the EBNF/WSC are
also generated. These include calls on "housekeeping" subrou-
tines of the SAPG and calls to LEX, a subroutine to scan and
return the next token in the object language. The code genera-
ted by the SAPG would become one procedure in the SAP. Note
that the keywords and delimeters that the language definer uses
in the production rules are preserved in the generated SAP.

A refined system flowchart of the SAPG and SAP showing
the types of supporting routines appears in Figure 3. The
manually-written syntactical supporting routines are of one of
several types:

(1) a lexical analyzer which returns tokens of syntactic
units to the SAP for analysis;

(2) statement semantics checking routines;

(3) error message handling routines;

(4) encoding routines to compact information for further
efficient processing; and

(5) statement storage routines.

The purpose of the lexical analyzer is to scan for syn-
tactic units or "tokens," using such delimeters as blanks and
certain punctuation marks, and to return tokens to the Syntax
Analysis Program (SAP) for syntactic checking. The
automatically-generated SAP calls upon the lexical analyzer
(LEX) whenever it needs the next token. The lexical analyzer
is based on the finite state machine concept. Each state of
the machine corresponds to a condition in the lexical processing
of a character string. At each state, a character is read, an
action is taken based on the character read (such as concatena-
ting the current character to previous ones or returning the
entire token to the SAP), and the machine changes to a new state.
The entire character set is divided into categories such as
illegal characters, delimeters, "normal" characters, etc. A
state transition matrix is used. The rows of the matrix repre-
sent the character classes of the previous character, while the
columns represent those classes of the current character. The
entries in the matrix indicate the action to be taken and the
next state. The actions involve such steps as concatenating of
a character, ignoring a character, detecting an illegal charac-
ter, returning a complete token to the SAP, etc., and setting a
"next state."

97

9
ASSOCIATES. INC.

is input to the SAPG consists not only of the syntax soecifica-
tion but also of subroutine names embedded within the EBNF;
therefore the name "EBNF with Subroutine Calls" (EBNF/WSC). The
SAPG provides a capability to branch to these subroutines upon
successful recognition of a syntactic unit. Thus, they complete
the SAP to enable it to check statement semantics, to encode,
to produce error messages, and to store statements for later
processing. The invocations of these subroutines are generated
automatically by the SAPG, while the supporting subroutines
themselves are written manually. The definition of a subset
of M6800 microprocessors assembly language in EBNF/WSC appears
in the appendix. The subroutines to be invoked are indicated
between slashes (/.../). Note that subroutine calls are made
after the successful recognition of syntactic units up to that
point.

The SAP generated by the SAPG according to the EBNF/WSC
is supplemented and linked with the routines. The SAP accepts
statements in the assembly language and checks them for syntac-
tical correctness, and local semantics. It produces a listing
of the statements, syntax diagnostics, an encoded stored ver-
sion of the statements, and a cross-reference report.

The SAPG is a small compiler in itself in that it pro-
cesses a specification in the language EBNF/WSC and produces a
program (SAP). It performs in three passes.

In pass 1. each production is scanned, and its components
are encoded into a set of tables. Non-terminal symbols appear-
ing on the left-hand-side of a production (new production names)
are put into a symbol table, while non-terminals appearing on
the right-hand-side of a production are put into a work table.
Terminal symbols in a production are put into a terminal symbol
table. Subroutine calls are put into yet another table.

In pass 2, the symbolic references in the work table
(i.e. non-terminals on the right-hand side of the original
production) are resolved. Pass 2 checks that each right-hand-
side non-terminal symbol in the work, table is defined, and links
it to the corresponding entry in the symbol table. Undefined
non-terminals as well as circularly-defined non-terminals can
be detected in these table searches.

Pass 3 of the SAPG is the code-generation phase that
produces the SAP in PL/1. It is only entered if no errors were
encountered in the previous phases. For each EBNF/WSC produc-
tion, a PL/1 procedure is generated. Each one returns a bit:
1 if the recognition was successful; 0 if it was unsuccessful.
The exclusive nature of EBNF production rules and alternatives
is effected by generating nested PL/1 IF-THEN-ELSE statements.

96 a
ASSOCIATES. INC

r

JS

<; -H
en S

c
•H cn
4-) 0)
M a
O -rl

3 O
t/5 U

CO
60 QJ
c a

•H •H
M 4-1
o D
u O
in Pi

0)
CJ u cn

•H c 0)
4J •H a

.H C ^ •H
td 3 o 4J
a i OJ 13
o QJ J o

H-l w o ed

a) a)

cd u
o
u

w a p^
3
O

cu

3

•H
IS

W

T3
C
(0 M

QJ
C5 C

< 4->
tn 3

o
O J2

3

•H
> 00

T3 4-J
QJ M
H O
•H CX
(0 D,
4J 3
QJ CO a

98

Some of the semantics of the specification statements
can be checked by the routines. An example of a local semantics
checking routine is one which checks the memory locations.
These manually-written routines are invoked automatically by the
SAP by virtue of their specification in the EBNF/WSC.

Error subroutines stack error diagnostics to print out
upon recognition of a syntactically-incorrect statement. Upon
reaching an incorrect syntactic unit, the automatically genera-
ted SAP does not print its own messages, but expects the
corresponding diagnostics to be on an "error stack." For this
purpose, subroutines have to be written to give a user effec-
tive information when statements are incorrect. Specifically,
an error message has to be stacked for each expected terminal
symbol in the assembly language in case the token is missing
or incorrect. Upon reaching incorrect syntactic units, the
automatically generated SAP does not print its own messages, but
expects the corresponding diagnostics to be on an "error stack."
For this purpose, subroutines have to be written to give a user
effective information when statements are incorrect. Specifical-
ly, an error message has to be stacked for each expected
terminal symbol in the assembly language in case the token is
missing or incorrect. If the expected token is found, the SAP
simply pops the corresponding error message and continues; if
the expected token is missing or incorrect, the SAP pops the
corresponding error message, prints the statement number and
message, scans for the end of the statement delimeter, and con-
tinues .

One product of the process is the Error Diagnostics
Report containing the messages. Each message gives the diagnos-
tics provided by the error routine and provides the exact
location of the error so that it can be corrected and resubmit-
ted by the user easily. If no syntax errors are found during
the syntax analysis phase, a message will be sent that "NO
ERRORS OR WARNINGS DETECTED." But if error diagnostics are
produced, a flag is set to disable continuation of analysis
beyond the syntax checking.

Encoding routines encode statements into the attributes
in the uniform tabular representation. All of the names or
addresses when provided in the source assembly program are kept
intact in internal form for use by the object program. Many
of the descriptions and attributes are however encoded for more
compact and efficient processing later. One encoding routine
is written for each encoded attribute. Each routine is invoked
automatically after recognition of the syntactic unit by the
SAP. The invocation is automatically generated as part of the
SAP (by the SAPG) by virtue of its specification in the EBNF/WSC,
The attributes of the tables consist of an operation, it's

99 a
ASSOCIATES. INC.

arithmetic function, registers effected, operand addresses with
modes of addressing, location of instructions, etc.

Storage routines collect the strings of names and other
encoded information for each assembly language statement, and
pass them to the STORE system, which is a sub-system in itself
to store the statements in a uniform-tabular-representation
for later processing. Such storage-invoking routines are called
at the end of scanning each statement. The storage subsystem
which is called by these routines, stores the statements in the
output table.

At the end of the syntax pass, we have the entire set of
statements stored in a manner convenient for further analysis.
The storing subroutines which invoke the use of the STORE system
act as an interface between the automatically generated SAP and
the second process described in Section 4. The storage system
is an extension to the capabilities of the SAPG since it is
general purpose in nature and is independent of the nature of
the language specified, and could be used for processing other
languages.

Finally, there are just a few "housekeeping" type sub-
routines which need not be written by the language definer
because they are provided by the SAPG, but which need to be in-
cluded in the EBNF/WSC.

4. GENERATION OF A PROGRAM IN THE MASTER-INSTRUCTION-SET ASSEMBLY
LANGUAGE

This section discusses the second translation process
shown in Figure 1, which transforms a uniform-tabular-presentation
of the source assembly program into an object program in the
master-instruction-set assembly language.

Our approach to this translation process can be visualized
as modelling the source microprocessor, with its source assembly
language program and data, in the standard-microprocessor and
its master-instruction-set assembly language and data. The model-
ling can be further envisaged in three parts: hardware, program
and data.

The modelling of the hardware is completely independent
of the individual source assembly program that is being trans-
lated. This modelling activity defines corresponding arithmetic
operations, registers, numbering systems, memory and input/
output in the two microprocessors. This correspondence will have
to be defined manually for each source and standard micropro-
cessor pair. It will be stated in a tabular form and will be
referenced by the translating process in the course of

100 a
ASSOCIATES. INC.

translating the program.

The correspondence between the source assembly language
and data and the standard-microprocessor assembly language and
data would be based on the individual program that is being
translated.

The degree of correspondence in the modelling would also
depend on certain characteristics in the source assembly lan-
guage. We can basically distinguish three cases. The most
severe case is where the source assembly language contains ab-
solute addresses in the program area as operands of jump or
execute instructions. In this case we will have to model the
program area in the standard microprocessor to correspond to the
program area in the memory in the source microprocessor. Wher-
ever the space required for corresponding instructions in the
standard microprocessor exceeds the space required for the cor-
responding instructions in the source microprocessor, it will be
necessary to utilize an overflow program memory area in the
standard-microprocessor memory, and insert there instructions
which require more space. Also correspondence would have to be
established between the data area in the source microprocessor
and the data area in the standard microprocess.

A less severe case is where symbolic labels are used
throughout the source assembly language programs as operands
of jump instructions. In this case it is not necessary to re-
tain a one to one correspondence between the two program areas.

The simplest case is where also the operands are re-
ferred to exclusively in symbolic form and no absolute addresses
are used. In this case there is also much flexibility in
allocating data areas.

This process can be visualized as consisting of five
sequential phases: model definition, preliminary code transla-
tion, optimization, comparison of execution times and documen-
tation. These phases are briefly described below.

The first phase consists of scanning and analysis of
the entries in the uniform-tabular-presentation of the source
program, to determine which of the above three cases applies;
namely examine the addressing scheme-whether it is symbolic or
requires also the computing of address values, and whether the
operands are all in the data area or also in the program area.
Based on this, the program and data memory areas of the source
microprocessors may have to be mapped into the memory of the
standard microprocessor.

The second phase consists of preliminary code generation

101 0
ASSOCIATES. INC

in the master-instruction-set assembly-language. The transla-
tion is performed on eacn source assembly language statement
(now in the uniform tabular representation). If possible, the
object language instruction(s) is (are) placed in" the area in
memory^corresponding to the respective source language instruc-
tion, if the object language instructions require more space
(especially where there are micros) then a jump instruction is
inserted in the appropriate location and the corresponding
object code is placed in a overflow area as a subroutine with a
return to the next instruction. This process scans the entire
source program presentation a second time. It results in a pre-
liminary program in the master-instruction-set language. Note
that generally the instructions for the source microprocessor
(excluding the micros) constitute a subset of the master-
instruction-sets. Also -he instructions in the standard-
microprocessor are on the whole more compact and perform faster
then in the respective equivalent instructions of the source
microprocessor. Therefore in the great majority of cases it
should be possible to translate each instruction in the source
program into a single instruction in the object program.

The third phase is concerned with optimization of the
program obtained in the previous phase. The basic notion here
is that the standard microprocessor has in most cases more mem-
ory and working registers then there are in the source micro-
processor. The additional memory and registers can be traded
for reducing the computation time. The basic notion here is to
try wherever possible to utilize registers in place of memory
addresses. This phase requires a third scan of the program
in order to create a graph representation that is used to
identify the scope of each iteration, each subroutine and each
program branch. These subparts of the programs, constitute
subprograms which will be individually optimized. The global
variables of the program which are used to communicate between
the above mentioned subprograms should be retained in main
memory. Variables which are local to the subprograms can be
moved to the register and thereby reduce the needed memory area.
Also sequences of instructions in the source program may be re-
placed by a single of fev more powerful instructions of"the
master-instruction-set. This may reduce both the number of
instructions (and execution time) and the program memory area.

Note that the correspondence of individual subprograms
in the source program and the object program must be retained.

Based on this graph, it will be possible in the next
phase to scan the subprograms in the source and object programs
and compute execution times for these subprograms. The" compari-
son of overall execution times would be possible in some
instances giving a clear indication whether maximum execution

102 a
ASSOCIATES. INC

time requirements for a real time system will be met by the
replacement standard microprocessor. In other cases where
execution times are data dependent it will be possible to pre-
sent to the user only comparisons of performance times for the
subprograms. Further analysis would then be required by the
user to determine whether the replacement-microprocessor will
meet real time requirements.

The final phase is concerned with generating a documen-
tation of the program. As already indicated the approach that
we propose is essentially to use the techniques that are in-
corporated in a number of commercial assembly language auto-
matic flowcharting systems. The experience to date is primarily
in flowcharting assembly language programs for the IBM system
370.^ The documentation will also include cross reference
listings and data field analysis which will aid in program
maintenance and modification. To obtain a more readible flow-
chart the individual assembly language operation may be
expanded to equivalent English words. Vectors of data which
are scanned in iterations may be also identified by respective
iteration instances. The user would also have an option to
obtain a full flowchart showing each instruction, or ultimately
grouping the instructions in each of the subprograms (identified
in phase 2) as a single entry in the flowchart. An edited list-
ing of the assembly language program will also be produced with
comments identifying each of the subprograms.

APPENDIX

In the following example, a SAPG generated program will
be used for the assembly language translation from the M6 800 to
Z80 microprocessor. This is an automatic translator for the
cases where the references to real addresses do not effect the
translation.

The principle of translation is parsing each source as-
sembly instruction and calling appropriate semantic routines to
generate corresponding object assembly language instructions for
it.

The SAPG program will accept a set of syntax rules which
describes the syntax of the source assembly language (including
macros). The syntax rules include semantic routine calls. The
output of SAPG will be a driver program which parses the source
assembly program and calls on a set of manually prepared seman-
tics routines to generate object assembly instruction sequences.

We have to write a set of syntax rules for source as-
sembly language using EBNF/WSC and prepare a set of semantic
routines.

103

0
ASSOCIATES, INC.

The source machine is M6 80 0.

The target machine is Z80.

For the sake of simplicity we chose a subset of the
M6 800 instruction repertoire.

104

a
ASSOCIATES. INC.

 w. ̂

u
o
u
ea

rH
cn
C
Cfl

1

1 <

i
1

u
OJ
>

•H
u
o

) 1

e >> a
H U
X> 60
e o

<ii Qi U
o tn CM
M Cfl
3 <:

o 0

%
W

w

t i

en
u CJ 0)
1/3 •H p)
» a «

S o
Fn OJ Pi
3 tn
PQ
W

B >^ nl ^ U
^2 60 1 o

•U OJ !-i
0) w PJ
60 tn
M <;
ea
H

u
o

cn
d
ca

5
I
n
cn
03

O
cx;
N

O

rH

I
co
nj

O
o
CO

X

§

o

cd

•3
o

QJ
-

105

follows:

ADDA

ADDB

INC

INC A

INCB

DEC

DECA

DECB

LDAA

LDAB

STAA

STAB

SUBA

SUBB

CMPA

CMPB

BCC

BCS

BEQ

BMI

BVS

JMP

JSR

RTS

The instructions subset for the M6 800 is listed as

A+IVH-A

B+M-H3

M+l^-M

A+l-»-A

B+1->B

M-1->M

A-l^A

B-l-»-B

M-^-A

M^-B

A+M

B-*M

A-WN-A

B-M->B

A-M

B-M

C=0

0=1

Z=l

N=l

V=l

106 0
ASSOCIATES. INC

The syntax rules for this instruction subset are as
follows:

< assembly-program > ::= [<instruction]*

< instruction > ::= /RESET_LABEL/ [< label_check >< NAME >

/SAVEJLABEL/]

BODY /ENDJLINE/

< label_check > ::= /ANY_LABEL/

< BODY > : := <ADD> | < INO | <DEC> | <LDA> | < STA> | <SUB>

|<CMP> | <BRA> | <JMP> | < JSR> | <RTS>

< ADD > ::= ADD < TWO_OPERAND > /GADD/

< two_operand > : := /SAVE_OP/ < A_OR_B>, < OPERA.ND>

< A_OR_B > ::= A/SAVE_REGA/ | B/SAVE_REGB/

< LDA > ::= LDA < TWOJDPERAND > /GLDA/

< STA > ::= STA < TWOOPERAND > /GSTA/

< SUB > ::= SUB < TWO_OPERAND > /GSUB/

< CMP > ::= CMP < TWO_OPERAND > /GCMP/

< INC > ::= INC < ONEJDPERAND > /GINC/

< ONEJDPERAND > ::= /SAVE_OP/ /RESET _AB/ < ONLY_OPERAND >

< ONLY_OPERAND S ::= <A_OR_B>j<OPERAND>

< DEC > ::= DEC < ONEJDPERAND > /GDEC/

< BRA > ::=<BRA_CODE> /SAVE_OP/ < OPERAND > /ASSBRA/

< BRA_CODE > ::= BCC|BCS[BEQ|BMI|BVS

< JMP > ::= JMP < OPERAND > /ASSJMP/

< JSR > ::= JSR < OPERAND > /ASSJSR/

< RTS > ::= RTS /ASSRTS/

< OPERAND > ::= < NAME >/SAVE_OPD_NAME/|< NUMBER >/SAVE_OPD_NUM/

107 a
ASSOCIATES. INC.

There are nine global variables:

1) DCL HAS_LABEL BIT(i); /* 0=1*10, 1=HAS */

2) DCL LABEL CHAR(6); /* STORE LABEL */

3) DCL 0P_C0DE CHAR(3); /* STORE OP_CODE */

4) DCL HAS_REG BIT(l); /* 0=NO, 1=HAS */

5) DCL REG CHAR(l); /* A OR B */

6) DCL KINDJDPD FIXED BIN; /* 1=NAME/ 2=NUMBER */

7) DCL OPD__NAME CHAR(6) : /* SYMBOL */

8) DCL OPD_NUM FIXED BIN; /* IMMEDIATE DATA */

9) DCL INDEXJJSE CHAR(l); /* 'X' OR 'b' */

All the semantic routine can be defined as follows:

1) RESET_LABEL: PROC;

HAS_LABEL = 'jZf'B;

END RESET_LABEL;

2) ANY_LABEL: PROC RETURNS (BIT(l));

RETURN (LINEBUF(l) -j^b');

END ANY_LABEL;

3) SAVE_LABEL: PROC;

LABEL = LEXBUFF;

END SAVE_LABEL;

4) SAVE_OP: PROC;

OP_CODE = LEXBUFF;

END SAVE OP;

108 a
ASSOCIATES. INC

5) SAVE_REGA: PROG;

HAS_REG = 'I'B;

REG = 'A1;

END_SAVE REGA;

6) SAVE_REGB: PROG;

HAS_REG = 'I'B;

REG = 'B' ;

END SAVE_REGB;

7) RESET_AB: PROG;

HAS_REG='jr B;

END RESET_AB;

8) SAVE_OPD_NAME: PROG;

KIND_OPD = 1;

OPD_NAME=LEXBUFF;

END SAVE_OPD_NAME;

9) SAVE_OPD_NUM: PROG;

KIND_OPD = 2;

OPD_NUM = GONVERT (LEXBUFF);

END SAVE_OPD_NUM;

Since Z80 has only one accumulator (REG A), all the arith-
metic and logic operations have to be done in it. But in M6800,
there are two general purpose registers (AGCA and AGGB). We can-
not assign the only accumulator in Z80 to either AGGA or AGGB.
So we will assign the REG B and REG G in Z80 to store the value
of ACGA and AGGB respectively.

In Z80 there are two index registers (IX and IY), we can
arbitrarily assign IX to store the value of IX in M6800.

In M6800, there are five different addressing modes, we

109 a
ASSOCIATES. IMC

will define the corresponding instruction sequence in Z80 for
each of these addressing modes.

1) Immediate mode: In Z80, this is also an implemented
addressing mode, so there is no problem to simulate.

2) Direct & Extended mode: In Z80, only LD instruction
allows direct addressing mode. So for all other
instruction we have to load the address into HG
register pair, then use HL as pointer which points
to the operand stored in memory.

3) Index mode: In Z80, it is also implemented.

4) Relative mode: In Z80, it is implemented, but not
complete so we will use direct addressing mode to
replace it and then treat it as Direct & Extended
mode.

110

a
ASSOCIATES. INC.

GADD: PROC;

IF REG = "A" THEN GENERATE ('LD A^');

ELSE GENERATE ('LD A^1);

IF INDEX_USE = 'X' THEN

DO: /* INDEX MODE */

GENERATE('ADD A,(IX '||OPD_ADDR||')');

END;

ELSE DO;

IF KIND_OPD=2 THEN GENERATE('ADD A, '||OPD_NUM);

ELSE DO; /*NOT IMMEDIATE MODE */

GENERATE('LD HL, '||OPD_NAME);

GENERATE('ADD A,(HL)');

END;

END;

IF REG='AI THEN GENERATE('LD B, A');

ELSE GENERATE('LD C, A');

END GADD;

Simimlarly, we can implement GSUB, GCMP.

Ill a
ASSOCIATES, IMC.

GLDA: PROC;

IF INDEX_USE = 'X' THEN

DO: /* INDEX MODE */

GENERATE('LD A, (IX 'I |OPD_ADDR I I') ') ;

END;

ELSE DO:

IF KIND_OPD=2 THEN /* IMMEDIATE MODE */

GENERATE('LD A, | | OPD_NUM) ;

ELSE /* DIRECT OR EXTENDED MODE */

GENERATE('LD A, (' | | OPD_NAME | | ') ') ;

END;

IF_REG = 'A' THEN GENERATE('LD B,A');

ELSE GENERATE('LD CfA');

END GLDA;

Similarly GSTA can be implemented.

112 a
ASSOCIATES. IMC

ASSBRA: PROC;

DCL COND CHAR(2);

IF OP_CODE = 'BCC THEN COND = 'NC;

ELSE IF OP_CODE = 'BCS' THEN COND = 'C';

ELSE IF OP_CODE = 'BEQ' THEN COND = 'Z1;

ELSE IF OP_CODE = 'BMI' THEN COND = 'M1;

ELSE IF OP_CODE = 'B VS' THEN COND = 'PE';

GENERATE (' JP ' | | COND | | ' , ' | | OPD__ADDR) ;

END ASSBRA;

ASSJMP: PROC;

GENERATE('JP '||OPD_ADDR);

END ASSJMP;

ASSJSR: PROC;

GENERATE('CALL 'CALL '||OPD_ADDR);

END ASSJSR;

ASSRTS: P ROC-

GENE RATE ('RET') ;

END ASSRTS;

113 a -<

ASSOCIATES. INC

GINC: PROC;

IF INDEXJJSE = 'X' THEN

GENE RATE('INC (IX +'OP D_ADDR ') ') ;

ELSE IF HAS_REG THEN

DO;

GENERATE('LD HL, '||OPD_NAME);

GENERATE('INC (HL)');

END;

ELSE IF REG = 'A1 THEN

GENERATE('INC B');

ELSE GENERATE('INC C');

END GINC;

Similarly GDEC can be implemented.

114

0
AUOCWTU. IMC.

REFERENCES

1. A. French, "A Syntax Analysis Program Generator," MS Thesis,
Dept. of Computer and Information Science, University of
Pennsylvania, 1972.

2. W. A. McKeeman, J. J, Horning and D. B. Wortman, "Compiler
Generator," Prentice Hall, 1970.

3. J. R. Wolberg & A. Peled, "Using Convert to Transform Source
Code," Technion, Haifa, Israel, 1976.

4. J. R. Wolberg & A. Peled, "Convert-A Language for Program
and Data File Conversion," Technion, Haifa, Israel, 1976.

5. George C. Hopkins, "Convert - An IBM to CDC Program Conver-
sion Code," Los Almos Lab., October 19 70.

6. A. J. Korenjak, "A Study in Program Conversion," Applied
Logic Corp., Princeton, N.J. 1970.

7. P. Barbee, "The Filer System of Computer Program Translation,"
Frobe Consultants Inc., Phoenix, Arizona, 1974.

8. Christan Cesar, "Real Time Emulation of Hardware," Ph.D.
Dissertation Department of Computer and Information Science,
University of Pennsylvania, 1979.

9. Applied Data Research Inc., "Autoflow II," Princeton, N.J.

115 a
ASSOCIATES. INC

APPENDIX C:

REPORT OF A TASK STUDY

DEVELOPMENT OF A

MASTER INSTRUCTION SET (MIS)

FOR THE

U.S. ARMY ADVANCED ATTACK HELICOPTER FIRE CONTROL SYSTEM

INVESTIGATOR: DR. SUSAN A. KELLY

116

^
ASSOCIATES. INC.

TABLE OF CONTENTS

SECTION PAGE

1 MASTER INSTRUCTION SET

1.1 INTRODUCTION 118

1.2 ASSEMBLER REQUIREMENT 118

2 PROGRAMMING MODEL

2.1 INTERNAL ARCHITECTURE 119

2.2 FLAGS 119

2.3 INTERRUPTS 122

2.4 I/O CONTROL 122

2.5 ADDRESSING MODES 122

3 MASTER INSTRUCTION SET 123

4 MICROPROCESSOR 1/8080/8085 134

5 MICROPROCESSOR 2/6800 139

6 MICROPROCESSOR 3/TMS-9900 144

7 MICROPROCESSOR 4/LITTON HARS 151

8 MICROPROCESSOR 5/SDP 175 154

9 MICROPROCESSOR 6/MECA-43 160

10 MICROPROCESSOR 7/SYMGEN 167

11 MICROPROCESSOR 8/EADI 173

117

ASSOCIATES. INC.

SECTION 1

MASTER INSTRUCTION SET

1.1 INTRODUCTION

The AAH has many microprocessor-based systems which basically utilize
nine different microprocessors. Each microprocessor requires its own
development and support systems. It would be better if this redundancy
was eliminated by concatenating the nine different instruction sets
into a superset. Unfortunately, the microprocessor which executes this
super instruction set does not exist. A simpler solution would be to
consolidate the various instruction sets, thereby eliminating redundancy,
and resulting in a Master Instruction Set (MIS). This report describes
the theoretical requirements for a microprocessor which executes the
MIS. In addition a machine by machine translation from the native in-
struction set to MIS is provided.

1.2 ASSEMBLER REQUIREMENTS

To accomplish the goal of consolidating the various instruction sets, a
cross-assembler is required which takes the original source code and
translates it into coding for the MIS. This assembler would have to be
a macroassembler since some instructions may be more economically trans-
lated as a sequence of instructions rather than microcoding involved
commands. The need for macro capability is also dictated by the fact
that the source code may also contain macros.

The operation of this theoretical macroassembler is in two stages. First,
the source machine is specified and a line by line translation is pro-
duced. Second, the new translated code will be assembled into machine
code.

In addition to the "ordinary" commands in the MIS there is a separate
class, called the operate or OP-class. In essence, these are just mis-
cellaneous instructions. They are unique to individual microprocessors
and therefore did not warrant separate instructions in the MIS. This
report provides the macro coding for each of the OP-class instructions.
When the actual microcoding of this heretofore theoretical machine is
performed, it is entirely feasible that these instructions might also
be microcoded, but in any event, the OP-class instructions must be pro-
vided for.

Finally, if an advanced arithmetic chip (such as the 9511A) is used in
conjunction with the microprocessor (29116) then certain instructions
such as SIN, EXP, and SQRT, may become available to speed processing even
though they are not presently included in the Master Instruction Set.
In this case there will have to be an intervention by a software engineer
to hand-substitute these commands for the blocks of code accomplishing
the same functions.

118 a
ASSOCIATES, INC.

SECTION 2

PROGRAMMING MODEL

2.1 INTERNAL ARCHITECTURE

The 29116 is a 16 bit machine with 32 internal registers. For the MIS,
the lower 16 registers Rn through R-ir are unassigned and are available
as general purpose registers. In the instance where individual micro-
processors have registers with specific names, they are assigned to
registers RQ through R-jg as required. For example, many microprocessors

a register called an accumulator. This might be assigned register
All assignments are given for each individual machine.in sections 4-

have
Rr 'G' 11

The upper 16 registers have specific assignments. The following is a
list of these registers and their assignment according to the MIS.

egister Abbreviation Assignment
16 PC Program Counter
17 PSW Processor Status Word
18 IM Interrupt Mask
19 SP Stack Pointer
20 CRU Communications Register
28 ER Extension Register
30 Q Quotient Register

Both RAM and ROM are assumed to be 16 bits wide. All addresses will
be 16 bits long obviating the need for modes of addressing such as direct
or zero-page.

2.2 FLAGS

The PSW is considered to be an aggregate of 16 different flag bits as
illustrated in Figure 1. When the flag bit is 1, the condition that flag
represents is considered true as of the last operation. It is assumed
that the processor will set or clear flags as required. The definition
of each bit is described below.

Bit
0
1
2
3
4
5
6
7
8
9
A

Abbreviation
C
i
7

N
D
1

H
/X0
>0
A>
L>
1

Definition
8 bit carry
8 bit overflow
8 bit zero or equal
8 bit negative bit
Even parity check
8 bit half-carry
Greater than zero
Greater than or equal to zero
Arithmetically greater than
Logically greater than
Always set to 1

119 a
ASSOCIATES. INC

i-

H

r3

OS
c

oo
LU
CJ
o
ess
a.

cc

en

CD

cc

o

n3
3 o

$-
CD
>

O

>
■M

CO
OJ
2:

+->

03
t1
u
re
o
i

03

/A

/\l

-
>

M

S

LU II

=

A

/M •
•

LU
rr A

>>

o
•r-

OJ
E

il

U-

>>

03
O

•r-
CT)
o
 1

^
- ro

O
•r—

+->
•I—

T3
£Z
O
o
c
3

^
O

OJ

i—

X

<

■21

>
■f—

|J
03
O".

+->
•I—

<

>
2 o

i-

>
C3

< >

03 >.
C) b.
0) 03
s: •i—

i—-

>) • i—

S- X
03 3

•i— <
i—
•r—

X
Z3
<

S^

120
ASSOCIATES, INC.

Bit Abbreviation Definition
B AZ . Upper 8 bit zero
C . TN 12 bit negative
D As Arithmetically less than
E AV 16 bit overflow
F AN 16 bit negative

Carry Bit (C) - Bit 0 is modified as a result of specific operations,
such as ADCw and SBCw, or directly with commands such as SETJ3 and RES0.
This bit serves as either 8 or 16 bit carry depending on w.

Overflow Bit (V) - Bit 1 is set or cleared as a result of byte arithmetic
operations. It will be modified during add and subtract operations when
the least significant 8 bits result in a value which cannot be contained
in those 8 bits. Similarly, bit E is set whenever the least significant
16 bits cannot accommodate the result of an arithmetic operation.

Zero Bit (Z) - Bit 2 is automatically set to one whenever the result
of an operation equals zero. Therefore bit 2 is set to one whenever
all the bits of the result are zero, and reset whenever any of the bits
are not zero. Bit B performs the identical function for the upper byte.

Negative Bit (N) - Bit 3 contains the value of the sign bit (bit 7) pro-
duced by all arithmetic instructions operating upon 8 bit words. Bit C
is set whenever a 12 bit result of an arithmetic instruction produces a
negative result. Similarly bit F is set whenever a 16 bit result of an
arithmetic instruction is negative.

Parity Bit - Bit 4 is set whenever the result of a parity check is even.
Bit 4 is reset when the result of a parity check is odd.

H Bit - Bit 5 is set when a carry occurs during an ADNB or SBNB operation.
The carry can then be transferred from the least significant nybble (4 bits)
to the most significant nybble.

Greater Than Zero Bit - Bit 6 is set whenever a data movement or arithmetic
operation produces a result> zero. Bit 6 is reset to zero whenever the
result is£. zero.

Greater Than Or Equal To Zero Bit - Bit 7 is set whenever a data movement
or arithmetic operation produce a result greater than or equal to zero.
Bit 7 is reset to zero whenever the result is less than zero.

Arithmetically Greater Than - Bit 8 is set when the result is arithmetically
greater than the source with which it is being compared.

Logically Greater Than - Bit 9 is set whenever the result of a Boolean oper-
ation is greater than the source with which it is being compared.

Bit A - This bit is always one to allow an unconditional program transfer

121

a
ASSOCIATES. IMC.

when the following instructions are executed: JMAS, RTAS, JLAS,

Arithmetically Less Thar - Bit D is set when the result is arithmetically
less than the source to which it is being corrpared.

2.3 INTERRUPTS

Interrupts provide a microprocessor with the means of detecting external
asynchronous events. Generally an interrupt request is transmitted to
the microprocessor via a voltage level or transition. An interrupt request
may be ignored in certain instances or if it is non-maskable then it must
always be serviced. A special register IM, is available for specifying
whether or not an interrupt is to be serviced.

There are two philosophies in dealing with interrupts. The first speci-
fies that if an interrupt is to be serviced, then the processor transfers
control to a specific location in memory. This is a vectored interrupt.
If the processor goes to a specific location and then fetches the location
to which control will be transferred, it is called vector fetch. A simple
way of reconciling the two types is to make this theoretical processor
a vector fetch type. Then to execute instructions for a vectored type,
just place the normal vectored location in the memory fetch addresses and
operation will proceed as expected.

Unfortunately, the precise nature of interrupt instructions are idiosyncratic
to each machine. Therefore, special instructions are required to enable
the MIS processor to perform all types of interrupt service. These are the
IN and RI instructions. It is assumed these will be microprogrammed for
each machine appropriately.

2.4 I/O CONTROL

Communication with the external environment is generally done via input/
output (I/O) ports. Some processors have specific I/O commands which
transfer contents between register and I/O ports. This type of I/O oper-
ation is referred to as direct I/O. Other processors bring the full power
of their instruction sets to I/O operations by treating I/O ports as mem-
ory locations. These machines have no specific I/O operations. This type
of I/O processing is called memory-mapped.

It is assumed that the MIS processor will use memory-mapped I/O. When
translating instructions from direct I/O machines, the MIS macroassembler
will simply substitute MOV instructions to the address assigned the I/O ports.

2.5 ADDRESSING MODES

Each of the processors has a series of addressing modes associated with it.
The MIS incorporates all of these addressing modes. Table 1 lists the
addressing modes and the notation associated with them. Also included is
a symbolic description of how the effective address is formed. Following

122

S
ASSOCIATES. INC

Table 1 is a more detailed description of the various addressing modes,

TABLE 1

SUMMARY OF ADDRESSING MODES

Symbols Abbreviations

.() Contents of I Operand

[] Effective address M Memory address

«— "Is transferred to i R Register

@ Indexed UR Upper-half register

Immediate address Off Offset

Addressing Mode Notation Interpretation Of EA

Immediate #1 I
Absolute M [M]
Indirect (M) [(M)]

Register R (R)
Upper Half Register UR (R)8-15
Indirect via Register (R) [(R)]

Pre-decrement R -R (R)MR)-1
Post-increment R R+ (R), (R)*-(R)+1

Indirect via Register

a. Pre-increment +(R) [(RK-(R)+1]

b. Post-increment (R)+ [(R)],(R)«-(R)+1

c. Pre-decrement -(R) [(R)*-(R)-1]

d. Post-decrement (R)- [(R)],(R)<-(R)-1
Indexed

a. Indexed absolute M(3R [M+(R)3

b. Indexed indirect {Mm) [(M+(R))]

c. Indexed indirect
Post-increment (M@R)+

Extended M(3R* [M+(R*)]

Offset

a. Relative (R)-K)ff [(R)-K)ff]

123

SB
ASSOCIATES, INC

Addressing Mode Notation

b. Indirect via R (R+Off)

c. (b)+ Post-incre-
ment offset (R+0ff)+

d. Index, indirect
offset M@(R+0ff)

Assembler Directive

Interpretation Of EA

[((R)+0ff)]

[((R)+0ff)]. (R)*-(R)+1

[M+ ((R)+0ff)]

Absolute (Direct) - In this mode, the address following the opcode is
used as a pointer to the operand which is then fetched from memory.
Generally the full 16 bit address of any memory location is specified.
The 16 bit address obviates the need for paged addressing, particularly
zero paged addressing. That is, there is no advantage in assuming the
upper byte to be zero, since the upper byte is always included in a 16
bit address.

Indirect - In this mode the contents of the address contained in the in-
struction serves as a pointer to the operand.

Register - This addressing mode is similar to the absolute mode described
above except that the operand is specified as the content of a Register (R)

Upper-Half Register - the operand, in this mode, is the content of the
upper-half (UR) of a given Register, R.

Indirect Via Registers - In this mode the address of the operand is
specified by the contents of the Register (R).

Register Modify
a. Pre-decrement register - In this mode the address of the operand

is found by decrementing the contents of Register R, then using the up-
dated contents of Register R as the operand.

b. Post-increment register - This mode is similar to the Register mode
described above in that the operand is specified by contents of a given
Register but then the contents of Register R are incremented by one.

Indirect Via Register
a. Pre-increment - The contents of Register R are incremented one.

The address of the operand is then specified by the contents of the
address pointed to by Register R.

b. Post-increment register - The effective address of the operand is
specified as the content of the address pointed to by Register R. The
content of Register R is then incremented by one.

c. Pre-decrement register - The content of Register R is decremented,
the operand is then pointed to by the content of Register R.

d. Post-increment register - The operand is pointed to by the content

124 a
ASSOCIATES, INC

of Register R. The content of Register R is then incremented by one.

Indexed
a. Indexed absolute - In this mode the effective address of the

operand is found as follows: The address field accompanying the op-
code is added to the contents of the specified Index Register.

b. Indexed indirect - This mode is similar to Indexed absolute ex-
cept two operations are required. First the contents of Register R
are added to the address field accompanying the opcode. This value
points to a location which in turn points to the address containing
the operand.

c. Indexed indirect post-increment - This is identical to Indexed
indirect except that after the effective address is formed. Register
R is incremented by one.

Extended - In this mode it is assumed that the status of the extended
register specifies the field (each field contains 64K) that contains
the address of the current instruction.

Offset
a. Relative - In this mode the effective address containing the

operand is calculated by adding an offset value to the contents of
Register R.

b. Indirect via register offset - The contents of Register R are
added to the offset. This value then specifies the address which points
to the address containing the operand.

c. Indirect via register offset; post-increment - This mode is iden-
tical to b, except that the contents of Register R are incremented after
the effective address has been computed.

d. Indexed indirect offset - The effective address is calculated by
first adding the contents of Register R to the offset. This value is
then used to point to an address which is added to the address accompany-
ing the opcode. This final value points to the address which contains
the operand.

Assembler Directive

Strictly speaking, this is not an addressing mode. However, some in-
structions require an additional parameter for correct operation and
the second operand field is utilized for this specification.

125 a
ASSOCIATES. IMC.

SECTION 3

MASTER INSTRUCTION SET

After consolidating all 8 instruction sets, a Master Instruction Set
was produced containing 31 basic instructions. Three classes, OP,
IN, RI are somewhat less defined, in that each is specific to one processor.
The precise description of each of these three types is included in the
machine by machine translation.

Table 2 presents a list of the symbols and abbreviations utilized by the
MIS. Table 3 lists the 31 instructions of the MIS. Following this table
is a detailed description of the operation of each instruction.

TABLE 2

SYMBOLS AND ABBREVIATIONS

Symbo' s
—^ Transfer to _7V_ Logical and

^ Exchange contents ^^ Logical or
* Multiply ^vr Logical exclusive or

■
Divide () Contents of

SD Complement [] Effective address

Abbreviations

A Arithmetic

BCD Binary coded decimal

b Bit number

C With carry

D Destination

L Logical

m Mode

MP I/O port address

N No carry

n Number of times

P Place

PSW Processor status word

R Register

s Bit condition , S = set, C = clear

126 a
ASSOCIATES. IMC

s
SD

UR

w

Abbreviations

Source

Operand serves as both S and D

Upper-half of 16 bit register

Word size

B 8 bit word

T 12 bit word

W 16 bit word

D 32 bit word

Mnemonic

1. ADmw

2. ANDw

3. ANRw

4. CLRw

5. CMPw

6. COMw

7. CONT

8. DAJw

9. DECw

10. DIVw

11. EXRw

12. INCw

13. INij

K. JLbs

15. JMbs

16. JRbs

17. MOVw

18. MPYw

TABLE 3

MASTER INSTRUCTION SET

Operand(s)

S, R

s, R

s, R

D

Sl
SD

,S2
, k

SD

SD

s. SD
s, R

SD

R, P

P

R, P

S, D

S, SD

Operation
S + R[«h C]—>R

S^v_R

s, -s2

3nD->SD + k, k = 0 or 1

No operation

BCD (SD)—>SD

(SD) - 1->SD

SD -j- S—>SD, Q (remainder)

S~\rR—^R

(SD) + 1-^SD

Interrupt command

Jump and link with R, con-
ditional

Jump, conditional (bit b of
PSW)

Test register and jump, con-
ditional

(S)->D

S * SD-^SD, Q

127

s
ASSOCIATES. IMC.

Mnemonic

19. OPij

20. RESb

21. ORRw

22. Rlij

23. RLnw

24. RRnw

25. RTbs

26. SBmw

27. SETb

28. SLnw

29. SRnw

30. XCRw

31. XEQw

Operand(s)

5, SD

ED

S, R

SD, N or C

SD, N or C

R

R, s
SD

SD

SD, L or A

SD-,, SD2

Operation
Operate class

9j\J>Db-*SD

S-V-R~4R

Return from interrupt

Rotate left n times

Rotate right n times

Return, conditional

R - S[- C]—4R

l^y-SDb—>SD

Shift left n times

Shift right n times

SD1<-^SD2

Execute contents of register
specified

ADmw

Operation:

Description:

ANDw

Operation:

Description:

Add

S + R [+C] -^-R

The contents of S are added to the contents of
R. The result is placed in R. The content of
the carry bit can be included or omitted depend-
ing upon the mode (m); ADCw refers to addition
with carry; ADNw refers to addition without carry.

Logical and

S_7V-R
The contents of S and R are logically ANDed.
The contents of S and R remain unchanged. This
instruction sets the flags of the PSW.

ANRw

Operation:

Description:

Logical and with replacement

S^VR-^R

The contents of R are logically ANDed with the
contents of S. The result is placed in R.

CLRw

Operation:

Description:

Clear word

0->D

Tne contents of D are set to zero.

128 a
ASSOCIATES. INC

CMPw

Operation:

Description:

Compare

Sl " S2
The contents of S
contents of Si an

are subtracted S
S- are unchanged 1

operation sets the flags of PSW

The
This

COMw

Operation:

Description:

Complement a word

SD—^SD + k

The contents of SD are complemented when k = 0
(zero bits become one, one bits become zero).
The contents of SD are negated when k = 1 (The
number becomes negative by the use of a two's
complement procedure.

CONT

Operation:

Description:

Continue

No operation

No operation is performed. The registers and
flags are unaffected by this command.

DAJw

Operation:

Description:

DECw

Operation:

Description:

Decimal adjust

BCD (SD)—^SD

The content of the word located in SD is adjusted
to form a binary coded decimal (BCD) by adding a
00, 06, 60, or 66 as required by each byte.

Decrement a word

(SD) - 1-^SD

The contents of SD are decremented by one.

DIV

Operation:

Description:

EXRw

Operation:

Description:

Divide

SD -f- S—^SD, Q

The dividend (SD) is divided by the contents of
S. The quotient is stored in SD. The remainder
is stored in Rg (Quotient register).

Exclusive or with replacement

S-^-R—>R

The contents of R exclusively ORed with the con-
tents of the address specified by S. The result
is placed in R.

129

0
ASSOCIATES, INC

INCw

Operation:

Description;

Increment a word

(SD) + 1—^SD

The contents of SD are incremented by one,

INij

Operation:

Description:

Interrupt command

Interrupt command (#j) of microprocessor i

Each of the 9 microprocessors included in the
Master Instruction Set require specific instruc-
tions in order to provide an interrupt routine.
Since they are all idiosyncratic a general command
cannot adequately incorporate them all (see gen-
eral comments).

JLbs

Operation:

Description:

Jjmp and link

Jump and link with the contents of R, conditional

JLbS, if bit b of PSW is set, transfer control to
the subroutine beginning at location P store the
current contents of the PC in R. JLbC, jump and
link if bit b is clear.

JMbs

Operation:

Description:

JRbs

Operation:

Description:

J jmp

Jjmp, conditional, unconditional

JMbs (conditional jump); test bit b of PSW. Jump
to location specified by P if bit is set or clear.
For example, JMbC jumps if bit b is clear and JMbS
jjmps if bit b is set. Use JMAS for unconditional jump.

Test register, conditional jump

Test register R, conditional jump

This instruction allows the contents of R to be
tested. Equivalent to adding zero to the contents
of R, then testing bit b of the PSW. The contents
of R are unchanged but the flags of the PSW are set.

MOVw Move a word

Operation: (S)-*D

Description: The contents of S are transferred to D.

MPY Multiply

Operation: S * SD—>SD, Q

130

a
ASSOCIATES. INC

Description: The contents of S are multiplied by a second
source (SD), which also stores the product,
least significant word is stored in Rn.

The

OPij

Operation:

Description;

Operate class

Miscellaneous

Some commands are unique to a particular micro-
processor and therefore cannot be incorporated
under a general command. While these commands
will of course be included in any complete MIS,
they are at this time classified as an Operate
Class Instruction (see specific processors for
specific examples).

RESb

Operation:

Description:

Reset bit b

0-A_SDb—>SD

Bit b of word SD is cleared by logically ANDing
it with zero. The result is placed in SD.

ORRw

Operation:

Description:

Logical or with replacement

S-VR-^R

The contents of R are logically ORed with the con-
tents of the address specified by S. The result is
placed in R.

Rlij

Operation:

Description;

Return from interrupt

Return from interrupt

Since the call to service an interrupt is unique
to each microprocessor, the return from an interrupt
is equally unique, and cannot be specified explicitly
(see general comments).

RLnw

Operation:

Description:

Rotate left

Rotate left n times

The contents of the address specified by SD are
rotated n times to the left. The carry bit can
be included, (SD, C) or omitted (SD, N).

RRnw

Operation:

Description:

Rotate right

Rotate right n times

The contents of the address specified by SP are

131 a
ASSOCIATES. INC.

RTbs

Operation:

Description;

SBmw

Operation:

Description:

rotated to the carry bit can be included, (SD, C)
or omitted from one rotating process (SD, N).

Return from subroutine

Return, conditional

RTbs; test bit b of PSW, Jump to location stored
in R if tested bit is set. RTbC; return if bit b
of PSW is clear. RTAS, unconditional return.

Subtract

R - S [-C]- -R

The contents of S are subtracted from one contents
of R. The contents of the carry bit can be included
or omitted depending upon the mode, SBCw refers to
binary subtraction with carry, SBNw refers to binary
subtraction without carry.

SETb

Operation:

Description:

Set bit b

l"V_SDb—^SD

The bit b of word SD is
with a one. The result

set by logically ORing it
is placed in SD.

SLnw

Operation:

Description:

Shift left

Shift left n times

Shift the contents of location SD n
left. A 0 is placed in the LSB and
shifted into the carry bit.

times to the
the MSB is

SRnw

Operation:

Description:

151

->

Shift right

Shi ft right n times

The contents of the address specified by SD are
rotated n times to the right. The shift can be
arithmetic (SD, A) where is sign bit SD is preserved,
or logical (SD, L), where a zero is put into the
most significant bit (see diagram below.

15
—■ 'BS

±1
-> —>

XCRw

Operation:

Exchange words

SD1f->SD2

132 9
ASSOCIATES. INC

Description: The contents of the word specified by SD-,
"swapped" with the contents of SD,,.

are

XEQw

Operation:

Description:

Execute contents of register R

Execute contents of register R

Execute contents of register R.

133

9
ASSOCIATES. IMC

SECTION 4

MICROPROCESSOR 1/8080/8085

4.1 INTRODUCTION

The 8080/8085 is byte oriented, having a word length of 8 bits. It
has three addressing modes and a 16 bit stack pointer. It also con-
tains six working registers which can be handled individually, or as
register pairs. The 8 bit accumulator accumulates the results of arith-
metic and logical operations, and there is also an 8 bit flag register.
Input/output (I/O) control is achieved via I/O ports rather than regu-
lar memory space. The S080/8085 utilizes direct control of I/O ports.

4.2 PROGRAMMING MODEL

Regi sters

A

BC

DE

HL

Prog ram Counter

Flag Register

Carry
Parity
Auxiliary
Zero

Carry

Sign

Inte rrupt Mask

Stac < Pointer

Designation (MIS)

Rl

R

R

16
17
bit 0
bit 4
bit 5
bit 2
bit 3

18

h9
4.3 INTERRUPT STRUCTURE

The 8080 has a vectored type of interrupt structure with one level of
interrupt. The 8085 is also vectored, with three levels of maskable
interrupt and one non-maskable level.

4.4 EXAMPLES OF ADDRESSING MODES

a. Register

ADC r*

b. Register Indirect

ADC m**

c. Immediate

ADC i***

ADCB

ADCB

ADCB

134

R/UR, R0

(R3), RQ

#1, Rf

a
ASSOCIATES. INC

f.

g-

Conditional

CALL

CZ

CNZ

CC

CNC

CP

CM

CPE

CPO

Double Register

INX B

INX D

INX H

INX SP

Absolute

LDA

Implied

CMA

JLAS

JL2S

JL2C

JL0S

JL0C

JL3C

JL3S

JL4S

JL4C

INCW-

INCW

INCW

INCW

MOVB

COMB

(R

(R

(R

(R

(R

(R

(R

(R

(R

19

19

19

19

19

19

19

19

19

P

P

P

P

P

P

P

P

P

k19

M, Rr

R0' R0

**

r = A, B, C, D, E, H, L

m = memory location contained in HL
: immediate

4.5 TRANSLATION INTO MIS

Table 4.5.2 presents a list of the 8080/8085 instruction set and the
associated MIS translations. In order to facilitate specification of
the operand(s). Table 4.5.1 has been devised.

TABLE 4.5.1

KEY TO OPERAND(S) (OP)

Op 1

Op 2

Register
Register Indirect
Immediate

Conditional

135

sZ^
ASSOCIATES. INC.

Op 3 Impl ied

Op 4 Regi
Regi

ster
ster Indirect

Op 5 Imme diate

Op 5 Register

Op 7 Absolute

TABLE 4.5. 2

TRANSLATION INTO MIS - 8080/8085

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2
ADC Op 1 ADCB S R0
ADD Op 1 ADNB S R0
ANA Op 1 ANRB S R0
CALL Op 2 JUS (R19)- p
C-- Op 2 JLbs (R19)- p
CMA Op 3 COMB R0 0
CMC Op 3 EXRB #0001 R17
CMP Op 1 CMPB Ro R
DAA Op 3 DWB Ro
DAD Op 6 ADCW R R3
DCR Op 4 DECB S

DCX Op 6 DECW R
DI Op 5 SET0 R18
El Op 5 RES0 R18
HLT

IN

Op

Op

5

5

IN10

MOVB Mp Ro
INR Op 4 INCB S
INX Op 6 INCW R
JMP Op 2 JMAS P
J — Op 2 JMbs P
LDA Op 7 MOVB M Ro
LDAX Op 6 MOVB (R) Ro
LHLD Op 6 MOVB M R,

136

Q
ASSOCIATES. INC.

Mnemonic Operar id(s) MIS Mnemonic Operand 1 Operand 2

LXI Op 6 MOVW #1 R
MOV Op 1 MOVB R/UR (R3)

MOV Op 1 MOVB S R/UR

MVI Op 5 MOVB #1 (R3)

MVI Op 5 MOVB #1 R/UR

NOP Op 3 CONT

ORA Op 1 ORRB s Ro
OUT Op 3 MOVB R0 Mp
PCHL Op 3 MOVW R3 R16
POP Op 6 OP10, n

PUSH Op 6 OP12, 13

RAL Op 3 RL1B R0 c
RAR Op 3 RR1B R0 C
R— Op 2 RTbs (R19K
RLC Op 2 RUB R0 c
RRC Op 3 RR1B Ro c
RST imi
SBB Op 1 SBCB Ro s
SUB Op 1 SBNB Ro s
SHLD Op 7 MOVW R3 M
SPHL Op 3 MOVW R3 R19
STA Op 7 MOVB R0 M
STAX Op 6 MOVB R0 (R)
STC Op 3 SET0 R17
XCHG Op 3 XCRW R2 R3
XRA Op 1 EXRB (R3) R0
XTHL Op 3 XCRW

8085 ONLY

(R19) R3

SET SETb R18
CLR RESb R18

1p = memory location specifying I/O port

137

a
ASSOCIATES. INC.

4.6 OP CLASS INSTRUCTIONS

OP class instructions irclude those commands that are unique to one or
two of the eight microprocessors contained in the MIS. As explained
in the Introduction those commands will be macro-assembled when possi-
ble. The 8080/8085 contains two such commands; POP and PUSH.

nemonic MIS Mnemonic

POP rp OP10

POP PSW OPll

PUSH 0P12

PUSH rp 0P13

4.7 IN/RI CLASS INSTRUCTIONS

Mnemonic

HLT

RST

Mac ro Coding

MOVW
(R19>+ R

MOVW
MOVB
MOVB

(R19)+

K25

Roc
R17
R0

MOVW R -(R19)

MOVB
MOVB K17 ^5
MOVW K25 -^9>

MIS Mnemonic Description

IN10 The processor is stop
ped. Registers and
flags are unaffected.

IN11 Restart

138

9
ASSOCIATES. INC

SECTION 5

MICROPROCESSOR 2/6800

5.1 INTRODUCTION

The 6800 microprocessor is a byte oriented processor with two general
purpose registers, a Stack Pointer, two interrupt levels and six address-
ing modes. Negative numbers are processed by two's complement arith-
metic. Those instructions requiring macro-assembly are described in Sec-
tion 5.6. I/O control is memory mapped in the 6800.

5.2 PROGRAMMING MODEL

Registers Designation (MIS)

Accumulator A Rn

Accumulator B R,

Index Register X R„

Program Counter R-.^.

Processor Status Register R-,7

Carry bit 0
Overflow bit 1
Zero bit 2
Negative bit 3
Interrupt Mask Bit bit 0, R,o
Half-carry bit 5 lb

Stack Pointer R
19

5.3 INTERRUPT STRUCTURE

The 6800 employs a vector fetch type of interrupt structure with two
levels of interrupt request; maskable and non-maskable.

5.4 EXAMPLES OF ADDRESSING MODES

a. Immediate

ADC ADCB

b. Absolute

AND ANRB

c. Relative

BRA JMAS

BMI JM3S

BNE JM2C

#1, R

M, R

(R16)+0ff

(R16)+0ff

(R16)+0ff

139

a
ASSOCIATES. INC.

BPL JM3C

BVC JM1C

BVS JM2S

BCC JM0C

BCS JM0S

BEQ JM2S

Zero Page

AND ANRB

Z, Page, I ndexed

AND ANRB

Implied

ABA ADNC

5.5 TRANSLATION INTO MIS

(R16)+Off

(R16)+0ff

(R16)+0ff

(R16)+0ff

(R16)+Off

(R16)+0ff

M, R

M@R, R

RT R0

Table 5.5.2 presents an alphabetical listing of the 6800 instruction
set along with the associated MIS translation. In order to facilitate
the specification of the operand(s). Table 5.5.1 has been included.

TABLE 5.5.1

KEY TO OPERAND(S) (OP)

Op 1

Op 2

Op 3

Op 4

Op 5

Op 6

Implied

Immediate
Absolute
Zero Page
2, Page, X

Absolute
2, Page, X
Implied

Relative

Absolute
2, Page, X

Absolute
Zero Page
2, Page', X

140 m
ASSOCIATES. INC.

TABLE 5.5.2

TRANSLATION INTO MIS - ■ 6800

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

ABA Op 1 ADNB Rl R0
ADC Op 2 ADCB M R

ADD Op 2 ADNB M R

AND Op 2 ANRB M R

ASL Op 3 SLIB SD

ASR Op 3 SR1B SD A

BCC Op 4 JM0C (R16)+0ff

BCS Op 4 JM0S (R16)+0ff

BEQ Op 4 JM2S (R16)+Off

BGE Op 4 JM7S (R16)+Off

BGT Op 4 JM6S (R16)+0ff

BHI Op 4 JM8S (R16)+0ff

BIT Op 2 ANDB R0/Rl M

BLE Op 4 JM6C (R16)+0ff

BLS Op 4 JM8C (R16)+0ff

BLT Op 4 - JM7C (R16)+0ff

BMI Op 4 JM3S CR16)+Off
BNE Op 4 JM2C (R16)+0ff

BPL Op 4 JM3C (R16)+Off

BRA Op 4 JMAS (R16)+Off

BSR Op 4 JLAS (R19)- (R16)+0ff

BVC Op 4 JM1C (R16)+0ff

BVS Op 4 JM1S (R16)+0ff

CBA Op 1 CMPB Ro Rl
CLC Op 1 RES0 R17
CLI Op 1 RES0 R18
CLR Op 3 CLRB SD

CLV Op 2 RES1 R17
CMP Op 3 CMPB VRi M

COM Op 3 COMB SD 0
CPX Op 2 CMPB R9 M

141 0
ASSOCIATES. INC.

Mnemonic Operar id(s) MIS Mnemonic Operand 1 Opera

DAA Op 1 DAJB SD

DEC Op 3 DECB SD

DES Op 1 DECW R19
DEX Op 1 DECW R2
EOR Op 2 EXRB M R0/R1
INC Op 3 INCB SD R0/Rl
INS Op 1 INCH R19
INX Op 1 INCW R2
JMP Op 5 JMAS P
JSR Op 5 JLAS (R19)- P
LDA Op 2 MOVW M Ro
LDS Op 2 MOVW M R19
LDX Op 2 MOVW M R2
LSR Op 3 SR1B SD L
NEG Op 3 COMB SD 1

NOP Op 1 CONT

ORA Op 2 ORRB S VRi
PSH Op 1 MOVB R (R19)

PUL Op 1 MOVB +(R19) R0/R1

ROL Op 3 RUB SD c
ROR Op 3 RR1B SD c
RTI Op 1 RI20

RTS Op 1 RTAS +(R19)

SBA Op 1 SBNB % Rl
SBC Op 2 SBCB RQ/RT M
SEC Op 1 SET0 R17
SEI Op 1 SET0 R18
SEV Op 1 SETT R17
STA Op 6 MOVB VR1 M

STS Op 6 MOVW R19 M

STX Op 5 MOVW R2 M

SUB Op 2 SBNB VR1 M

SWI Op 1 IN20

142 0
ASSOCIATES, INC.

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

TAB

TAP

TBA

TPA

TST

TSX

TXS

WAI

Op 1

Op 1

Op 1

Op 1

Op 3

Op 1

Op 1

Op 1

MOVB

MOVB

MOVB

MOVB

SUB

MOVW

MOVW

IN21

1

"17
SD

R 19

5.6 OP CLASS INSTRUCTIONS

17

v19

The 6800 does not contain any commands which require macro-assembly
by the MIS.

5.7 IN/RI CLASS INSTRUCTIONS

Mnemonic MIS Mnemonic

SWI IN20

WAI IN21

RTI RI20

Description

Software interrupt

Wait for interrupt

Return from interrupt

143

SB
ASSOCIATES. INC

SECTION 6

MICROPROCESSOR 3/TMS-9900

6.1 INTRODUCTION

The TMS-9900 has a 16 bit word length, a 32-kword address space and
a set of 69 instructions. The internal architecture of the 9900
allows for 16 general purpose registers and 15 index registers. A
unique feature of this microprocessor is its "workspace register file"
capability. This file occupies 16 contiguous memory words in the gen-
eral memory area. The workspace register points to the first of the
general purpose registers set up in the RAM space. I/O control is
direct in the 9900.

6.2 PROGRAMMING MODEL

Registers Designation (MIS)

Program Counter

Status Register

Equal
Arithmetically>
Log i call yi>

Arithmetical ly<
Parity
Carry
Overflow
Unconditional

Interrupt Register

Workspace Register

Communications Register Unit (CRU)

6.3 INTERRUPT STRUCTURE

R

R

16

<17
bit 2
bit 8
bit 9
bit 7
bit B
bit 4
bit 0
bit E
bit A

18

!19

l28

The TMS-9900 has a vector-type interrupt structure with 16 levels and each
is maskable.

6.4 EXAMPLES OF ADDRESSING MODELS

Immediate

LWPI

LI

LIMI

LDCR

MOVW

MOVW

MOVW

MOVW

#1, R19

#1, (Rlg)+0ff

#1, R18

#1, R, x28

144 a
ASSOCIATES. IMC

b. Workspace Register

CLR r CLRW (Rig)+0ff

c. Workspace Register Indirect

CLR *r CLRW (R19+0ff)

d. Register Indirect With Autoincrement

CLR *r+ CLRW (R1g+0ff)+

e. Indexed

CLR @TABLE(r) CLRW M@(Rig+Off)

f. Program Counter Relative

JEQ JM2S P

JGT JM8S P

JH JM6S P

JHE JM7S P

JL JM7C P

JLE JM6C P

JLT JMDS P

JOP JM4C P

JOC JM0S P

JNE JM1C P

JNO JM2C P

JNC JM!3C P

JMP JMAS P

g. Direct

CLR @m CLRW M

h. Communications Register Unit Relative

SBO SETb (R28)+0ff

6.5 TRANSLATION INTO MIS

Table 6.5.2 lists the instruction set of the TMS-9900 and the associated
translations. The operand(s) used by the 9900 have been recoded as de-
fined in Table 6.5.1.

145 a
ASSOCIATES. IMC

TABLE 6.5.1

KEY TO OPERAND(S) (OP)

Op 1 (Dual)

Op 2 (Single)

Workspace Register
Workspace Register Indirect
Di rect
Indexed
Workspace Register Indirect Auto-
increment

Workspace Register
Workspace Register Indirect
Di rect
Indexed
Workspace Register Indirect Auto-
increment

Op 3 Immediate

Op 4 Workspace Register

Op 5 CRU Relative Addres sing

Op 6 Program Counter Relative Addn

Op 7 Internal Register Store

TABLE 6.5. 2

TRANSLATION INTO MIS - TMS-9900

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

A Op 1 ADNW S SD

AB Op 1 ADNB S SD

ABS Op 1 OP30

AI Op 3 ADNW #1 (R19)+0ff

ANDI Op 3 ANRW #1 (R19)+Off
B Op 1 JMAS p

BL Op 1 JLAS (f^gHl P

BLWP Op 1 0P31 P
C Op 1 CMPW Sl s2
CB Op 1 CMPB Sl S2
CI Op 3 CMPW n s?

146

s
ASSOCIATES. INC

Mnemonic Operar d(s) MIS Mnemonic Operand 1 Operand 2

CKOF IN30

CKON IN31

CLR Op 1 CLRW SD

COC Op 2 OP32

CZC Op 2 OP33

DEC Op 1 DECW SD

DECT Op 1 0P38

DIV Op 2 DIVW S SD

IDLE IN32

INC Op 1 INCW SD

INCT Op 1 0P37

INV Op 1 COMW SD 0
JEQ Op 6 JM2S P
JGT Op 6 JM8S P
JH Op 6 JM6S P

JHE Op 6 JM7S P
JL Op 6 JM7C P

OLE Op 6 JM6C P

JLT Op 6 JMDS P

JOP Op 6 JM4C P

JOC Op 6 JM0S P
ONE Op 6 JM1C P
JNO Op 6 JM2C P

JNC Op 6 JM0S P
JMP Op 6 JMAS P

LDCR Op 1 MOVW S R28
LI Op 3 MOVW #1 (R19)+0ff

LIMI Op 3 MOVW #1 R18
LREX IN33

LWPI Op 3 MOVW #1 R19
MOV Op 1 MOVW s D
MOVB Op 1 MOVB s D

147 a
ASSOCIATES. IMC

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

MPY Op 2 MPYW S SD
NEG Op 1 COMW (R19)+0ff 1
ORI Op 3 ORRW #1 " (R19)+Off

RSET IN34

RTWP 0P34

S Op 1 SBNW SD S
SB Op 1 SBNB SD s
SBO Op 5 SETb R28
SBZ Op 5 RESb R28
SETO Op 1 MOVW #FFFF (R19)+Off

SLA Op 4 SL1W SD
SOC Op 1 ORRW S SD
SOCB Op 1 ORRB S SD
SRA Op 4 SR1W (R19)+Off A
SRC Op 4 RR1W (R19)+0ff • N
SRL Op 4 SR1W (R19)+0ff L
STCR Op 1 MOVW R28 (R19)+0ff

STST Op 7 MOVW R17 (R19)+Off

STWP Op 7 MOVW R19 (R19)+Off

SWPB Op 1 XCRB SD1 SD2
SZC Op 1 OP35

SZCB Op 1 0P36

TB Op 5 ANDW S R28
X Op 1 XEQW {R19)+0ff

XOP Op 1 IN35

XOR Op 2 EXRW s (R19)+Off

6.6 OP CLASS INSTRUCTIONS

Mnemonic MIS Mnemoni: Macro Coding

ABS OP30 JRFC
COMW

SD
SD

R1C+SKIP*
I16

148

3
ASSOCIATES. INC.

Mnemonic MIS Mnemonic Macro Coding
BLWP OP31 MOVW

s19 R0

R'
9

R19 ,R19

MOVW
MOVW Ro RV.+SKIP

)+13
MOVW)+14
MOVW
JMAS

)+15

coc 0P32 MOVW

4
ANRW
CMPW

czc OP33 MOVW

s2
> COMW

ANRW
R0 K0

CMPW

RTWP 0P34 MOVW (R1Q)+15

(RQ)+14
(R]|)+13

R17

R'
6 K
19

MOVW
MOVW

szc 0P35 MOVW MASK
> COMW k * ANRW S

SZCB OP 36 MOVB MASK
> COMB

R0 R0
ANRB s

INCT 0P37 INCW
INCW

SD
SD

DECT 0P38 DECW
DECW

SD
SD

*Offset required to skip past macro code..
**c .

i>+-j = effective address formed by S, plus one

6.7 IN/RI CLASS INSTRUCTIONS

Mnemonic

CKOF

CKON

MIS Mnemonic

IN30

IN31

Description

Address lines A.
set: HHL

Address lines A
set: HLH

0

0

149

Iji
ASSOCIATES. INC

Mnemonic

IDLE

LREX

RSET

XOP

MIS Mnemonic

IN32

IN33

IN34

IN35

Description

Suspend instruction
execution until an
interrupt, load or
reset occurs.

Load or restart ex-
ecution.

Computer reset

Extended operation

150

0
ASSOCIATES. IMC

SECTION 7

MICROPROCESSOR 4 - LITTON HARS

7.1 INTRODUCTION

The Litton HARS microprocessor utilizes a 16/32 word size (instructions,
16 bits, data, 32 bits). HARS processes negative numbers by two's comp-
lement arithmetic. Unfortunately, due to insufficient documentation, the
type of I/O control cannot be determined with certainty. However, the
inclusion of the BMV command (Block move of memory or I/O) suggests that
I/O control is the direct type.

7.2 PROGRAMMING MODEL

Registers

Accumulator

Program Counter

Processor Status Word

Interrupt Mask

Stack Pointer

Extension Register

7.3 INTERRUPT STRUCTURE

Designation (MIS)

R0
R16
R17
R18
R19
R28

Again, due to insufficient documentation on the HARS, the type of in-
terrupt structure is not known. However, it appears to have one level
of interrupt, which is maskable.

7.4 EXAMPLES OF ADDRESSING MODES

Register

AN ANRW

Extended

ANE ANRW

Extended, Indirect

ANE* ANRW

Address

ANY ANRW

Address, Indirect

ANY* ANRW

Immediate

ANM ANRW

151

S, R0

M@R*, R0

(MOR*), F

M, R0

(M), R0

#1, R0

Q
ASSOCIATES. INC

7.5 TRANSLATION INTO MIS

Table 7.5.1 lists the instruction set of the HARS microprocessor along
with the associated MIS translations. Due to a lack of sufficient doc-
umentation, the operands used by HARS are unknown, hence unspecified.

Mnemonic

R

IR

RTN

ASM

SSM

SF

RF

II

CR

LR

EX

AR

SR

DN

DIS

SLL

SRL

SRA

SLD

SRD

NOT

NEG

BMV

BT

L

DL

TABLE 7.5.1

TRANSLATION INTO MIS- LITTON HARS

Operand(s) MIS Mnemonic

IN40

RI40

RTAS

ADNB

SBNB

OP40

0P41

SET0

CMPW

MOVW

XCRW

ADNW

SBNW

Operand 1

^19
#1

#1

^18
51
S

SD

R

R0

1

Operand 2

R

SD,

R. 0
R

SL1W SD
SR1W SD L
SR1W SD A
SLID SD
SR1D SD A
COMW SD 0
COMW SD 1
0P42

ANDW S R
MOVW M R

MOVD M R

152 s
ASSOCIATES. INC.

Mnemonic

ST

DT

AN

OR

T

TP

TM

TZ

DAC

DEX

A

S

M
D

DA

DS

TR

TI

Operand(s) MIS Mnemonic Operand 1 Operand 2

MOVW R0 M

MOVD R0 M

ANRW S R0
ORRW S Ro
JMAS p

JM7S p

JM7C p

JM2S p

ADCD R R0
XCRD R0 R2
ADNW S R0
SBNW Ro S

MPYW S SD

DIVW S SD

ADND S SD

SBND SD S

0P4j R

JLAS R-in (M) 19

Insufficient documentation to determine the meaning of the command,

7.6 OP CLASS INSTRUCTIONS

Mnemonic MIS Mnemonic

SF OP40

RF 0P41

BMV 0P42

TR
**

0P4i

Macro Coding

Save register file

Restore register file

Block move of memory or I/O

INCW
JM3S

R
P

**
J = 3 - 7, where the numbers 3-7 refer to addressing modes a - e

listed in Section 7.4.

7.7 IN/RL CLASS INSTRUCTIONS

Mnemonic

R

IR

MIS Mnemonic

IN40
RI40

153

Description
Restart

Return from Intacswi

V^
ASSOCIATES. INC

SECTION 8

MICROPROCESSOR 5 - SDP 175

8.1 INTRODUCTION

The SDP 175 microprocessor utilizes a 16 bit word. Due to sparse
documentation, other characteristics of the SDP 175 are not known.
It is assumed that there are 16 general purpose registers, and two
index registers. I/O control is memory mapped in the SDP 175.

8.2 PROGRAMMING MODEL

Registers

A Register

B Register

Program Counter

Processor Status Register

Overflew
Zero
Negative

Designat- "on (MIS)

R0
Rl
R16
R17
bit 1
bit 2
bit F
bit 6
bit 7

R18
R20
R21
R22

Interrupt Mask

Index Register, X

Index Register, V

Error Register

8.3 INTERRUPT STRUCTURE

The type of interrupt structure utilized by the SDP 175 cannot be
determined due to insufficient information.

8.4 EXAMPLES OF ADDRESSING I^ODE

Examples of addressing modes cannot be provided, due to insufficient
information.

8.5 TRANSLATION INTO MIS

Table 8.5.1 presents the list of the SDP 175 instruction set along
with the associated MIS translations. Due to insufficient information
the operands used by the SDP 175 are not known.

154

a
ASftOClATES. INC

TABLE 8.5.1

TRANSLATION INTO MIS - SDP 175

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

Memory Ref With
Indexing

LDR

STR

CMR

ADDM

SUBM

MPYM

AN DM

ORM

INCM

LORD

STRD

ADDB

SUBD

Memory Reference-
Pre-Indexed Indi-

rect

LRI

SRI

LRIX

SRIX

Unconditional
Jump

JMP

JSR

JMPI

JSRI

Conditional Jump

JZ

JN

JP

JM

MOVW

MOVW

CMPW

ADNW

SBNW

MPYW

ANRW

ORRW

INCW

MOVD

MOVD

ADND

SBND

MOVW (M{3R20) R
MOVW R (M@R20)

MOVW (M@R20)+ R
MOVW (M@R20)+ R

JMAS P

JLAS (R19K P

JMAS (P)
JLAS (R]9)+ (P)

JM2S P

JM2C P
JMFC P
JMFS P

155 a
ASSOCIATES, INC

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

JOT

JLE

JGE

JLT

JGT

IJX

IJY

Register/Register

RTR MOVW R R

ADD ADNW R R

SUB SBNW R R

MPY , MPYW R R

AND ANRW R R

OR ORRW R R

XOR EXRW R R

ADDL

SUBL

SWAP XCRW R R

SUBC CMPW R R

ANDC ANDW R R

XORC

DIV

BIT

TBIT

SBIT

RBIT

TBITI

SBITI

RBITI

Register Operate

ABS

INCR

DECR

CMPL

156

MIS Mnemonic Operand 1

JMES P
JM6C P
JM7S P
JM7C P
JM6S P
0P5C

dP5D

MOVW R
ADNW R
SBNW R
MPYW R
ANRW R
ORRW R
EXRW R
OP50

OP51

XCRW R
CMPW R
ANDW R
OP52

DIVD. R

ANDW #MASK

SETb R
RESb R
ANDW (M)
SETb (R)
RESb (R)

OP53

INCW R
DECW R
COMW R

0
ASSOCIATES. INC

Mnemonic

NEG

ZERO

ZLBY

ZRBY

XEC

LMDT

RTRN

Literal

Operand(s)

INE

INH

WAIT

NOP

LMSK

CPLSE

MIS Mnemonic

COMW

CLRW

CLRB

CLRB

XEQW

0P54

RTAS

RES0

SET0

IN50

CONT

MOVB

0P58

Operand 1

R

R

UR

R

R

v18
{18

Operand 2

1

LDVS MOVB #1 R
ADDVS ADNB #1 R
LDV MOVW #1 R
ADDV ADNW #1 R
ANDV ANRW #1 R
ORV ORRW #1 R
OXRV EXRW #1 R
SUBVC CMPW #1 R
ANDVC ANDW #1 R
XORVC 0P55

Shift

SRA R, n SRnW R A
LSRA n SRnD R0 A
SRC R, n RRnW R N
SLSF n OP56

SLIM n OP57

SLA R, n SLnW R
LSLA n SLnD R0

Control
w

"18

157

0
ASSOCIATCS, INC

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

Stack Operations

PUSH MOVW R (R19H
PULL MOVW -(R19) R
TSKR MOVW R19 R
TRSK MOVW R R19
TMSK a MOVW M R19
PUSHS MOVW R17 (R19)+

PULLS MOVW -{R19) R17
RTRNS RTAS -(R19)

Test Operations

TPLSE 0P59

CKSUM OP5A

FBIT K, R SETb R
FBIT K, R SETb (R)
RESET IN51

ERIN R MOVW R22 R

DIN R MOVW MP
R

OUT K, R OP5B

8.6 OP CLASS INSTRUCTIONS

Mnemonic MIS Mnemonic Macro Coding

ADDL OP50 Add and limit overflow

SUBL OP51 Subtract and limit overfl ow

XORC OP52 MOVW
EXRW k R23

K23

ABS

LMOT

OP53

0P54

JRFC R
COMW R

Limit if overflow true

(R16)+SKIP*

XORVC OP55 MOVW
EXRW

n
R

R23
K23

SLSF 0P56 Shift left scale facto r

SLIM OP57 Scaled limit

CPLSE 0P58 Output

158

control pulse

D N

S >
ASSOCIATES. INC

Mnemonic MIS Mnemonic

TPLSE OP59

CKSUM OP5A

OUT K, R OP5B Ther
desc

IJX 0P5C JR6C
DECW
JMAS

IJY OP5D JR6C
DECW
JMAS

Macro Coding

Test pulse

Check sum

There is insufficient information to
describe this I/O command.

R20 (R19KSKIP

p20

R21 (R19)+SKIP
R?1

SKIP = Offset required to skip past macro coding.

8.7 IN/RI CLASS INSTRUCTIONS

Mnemonic MIS Mnemonic Description

WAIT d IN50 Wait for interrupt

RESET IN51 Reset

159

0
ASSOCIATES, IMC

SECTION 9

MICROPROCESSOR 6 - MECA-43

9.1 INTRODUCTION

The MECA-43 is a word-oriented processor (16 bits) with 16 general
registers and six addressing modes. It processes negative numbers
by two's complement aritimetic and has a 32 or 48 bit floating point.
The MECA-43 employs 16 vectored interrupts that are maskable and ex-
pandable. I/O control in the MECA-43 is direct.

9.2 PROGRAMMING MODEL

Registers Desi gnation (MIS)

Processors 1 Processor 2 Processor 1 Processor 2

Accumulator (A) Accumulator (A) R0 R8
Quotient (B) Quotient (B) Rl Rg
MR

Base/Return (BR)

MR

Base/Return (BR)

R2
R3

R10
Rll

MSP

X

Y

Z

Program Counter

MSP

X

Y

Z

R4
R5
R6
R7
R16

R12
R13
R14
R15

Processor Status Word (PSW) R17
Interrupt Mask (IM) R18
Alternate Program Counter R19
Extension Register R28 R29

INTERRUPT STRUCTURE 9.3

The MECA-43 employs 15 vectored interrupts that are maskable and ex-
pandable.

9.4 EXAMPLES OF ADDRESSING MODES

a. Common

LDA MOVW M, R0/R8

b. Di rect

LDA MOVW M@fVRll

c. Indirect

LDA MOVW (M@R3/R11)

160 a
AMOCIATES. IMC

Immediate

LDA MOVW

Program Counter Relative

LDA MOVW

Index Register Relative

LDA MOVW

LAXi* MOVW

#1, R0/R8

(R16)+0ff, R0/R8

(R5/R13)+0ff, R0/R8

(Ri+4/
R12+i

)+0ff' R0/R8

i = 1, 2, 3

9.5 TRANSLATION INTO MIS

The instruction set of the MECA-43 is listed in Table 9.5.2 along with
the associated MIS translations. The operands utilized by the MECA-43
are specified according to Table 9.5.1.

TABLE 9.5.1

KEY TO OPERAND(S) (OP)

Op 1

Op 2

Op 3

Op 4

Op 5

Op 6

Op 7

Op 8

Op 9

Op 10

Common
Indirect
Direct
Immediate
(P) Relative
(X) Relative

Inter-register

Immediate

Direct

Common

Immediate
(X) Relative

Common
Indirect
Di rect
(P) Relative
(X) Relative

Indirect

P-relative

(X) Relative

161 a
ASSOCIATES. INC

Mnemonic

Data Transfer

Operand(s) MIS Mnemonic Operand 1 Operand 2

(A)

LDA Op 1 MOVW S R0/R8
LAXi Op 2 MOVW R R0/R8
LAFB Op 2 MOVW Rl R0/R8
LABR Op 2 MOVW R3 R0/R8
IBAR Op 3 MOVE #1 R0/R8
EXBA Op 2 XCRB RQ/R8 UR0/UR8

STA Op 1 MOVW Ro D

Data Transfer (B)

LDB Op 1 MOVW s VRg
LBFA Op 2 MOVW Ro VRg
IBBR Op 3 MOVE #1 IVRg
EXBB Op 2 XCRB VR9 utyuRg
STB Op 1 MOVW VRg D

Data Transfer (X)
LXD Op 4 MOVW M R5
LXI Op 3 MOVW #1 R5
LXiA Op 2 MOVW Ri+4 R0
SXC Op 5 MOVW R5 M

SXD Op 4 MOVW R5 M

Data Transfer (BR)

LBRD Op 4 MOVW M R3
LBRI Op 3 MOVW #1 R3
LBRA Op 2 MOVW R0 R3
IBBA Op 3 MOVB #1 R3
SBRC Op 5 MOVW R3 M

SBRD Op 4 MOVW R3 M

Add (A)

ADD Op 1 ADCW s R0/R8
ADBA Op 2 ADCW Rl R0/R8
AXiA Op 2 ADCW Ri+4

R0/R8
Add (B)

ADB

ADAB

Op 1

Op 2

ADCW

ADCW

162

S

Rr

VR9
VR9

S
ASSOCIATES. INC.

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

Add (X)

AXD Op 4 ADCW M R5
AXI Op 6 ADCW #1 R5

Add (BR)

ABRD Op 4 ADCW M R3
ABRI Op 3 ADCW #1 R3

Subtract (A)

SUB Op 1 SBCW R0/R8 S

RSA Op 1 OP60

SBFA Op 2 SBCW ¥*8 VRg
Subtract (B)

SBB Op 1 SBCW VR9 s
Multiply/Divide

MPY Op 1 MPYW S R0/R8
DIV Op 1 DIVW S R0/R8

Loqical (A)

AND Op 1 ANRW S R0/R8
LDR Op 1 ORRW S R0/R8
XDR Op 1 EXRW s RQ/RQ

Shift (A)

SARn Op 6 SRnW RQ/R8 A

SALn Op 6 SLnW R0/R8
Shift (B)

SBR Op 6 SRnW R-j/Rg A

SBL Op 6 SLnW VR9
Shift (A) and (B)

SDR Op 6 SR1D R0/R8 A
SDL Op 6 SLID Rg/Rg

NRM Op 6 OP61

Transfer Uncondi-
tional

TRA

TRS

TTR

Op 1

Op 7

Op 8

JMAS

JLAS

RTAS

163

(R3) +

-(R3)

^
ASSOCIATES. IMC

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

Transfer (A)

TRZ Op 1 JR2S R0/R8 P

TRN Op 1 JR3S R0/R8 P
Transfer (X)

TXI

TXP

Op 1

Op 9

JRBC

JRBC
-Ri+4

-Ri+4

(W
(R16)+Off

Transfer (BR)

TBRI Op 8 JRBC -R3 (R3)

TBRP Op 9 JRBC -R3 (R16)+Off

Skip

SMP Op 1 CMPW S R0
DS0 Op 6 JR2S MP

(R16)+0ff

DS1 Op 6 JR2C MP (R16)+0ff

Input/Output
f

INA Op 6 MOVW MP
R0/R8

INB Op 6 MOVW MP R^Rg

OTA

OTB

Op 6

Op 6

MOVW

MOVW

RQ/RQ

VR9
MP
MP

Double Precision

DAD Op 1 ADCD s R0/R8

DSU Op 1 SBCD VR8 S

DLD Op 1 MOVD M R

DST Op 1 MOVD R M

DML Op 1 MPYD S R0/R8
DDV Op 1 DIVD S R0/R8

Floatinq Point

FLD Op 10 0P52

FXD Op 10 0P63

FAD Op 1 0P64

FSD Op 1 0P65

FMD Op 1 0P66

FDO OP 1 0P67

FLS Op 10 0P68

FXS Op 10 0P69

164 a
ASSOCIATES, INC.

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

FAS

FSS

FMS

FDS

Op 1

Op 1

Op 1

Op 1

9.6 OP CLASS INSTRUCTIONS

Mnemonic MIS Mnemonic

RSA OP6!3

NRM

FLD

FXD

FAD

FSD

FMD

FDD

FLS

FXS

FAS

FSS

FMS

FDS

0P61

0P62

.0P63

0P64

OP65

0P66

0P67

0P68

0P69

0P6A

OP6B

0P6C

0P6D

0P6A

0P6B

0P6C

0P6D

MOVW
SBCW
MOVW

Macro Coding

S, 1
20
20

R20

ft
See MECA manual Section 3.6.

Fix to float conversion. See MECA
manual Section 3.7.3.

Fix to float conversion. See MECA
manual Section 3.7.1.

Floating point add, double precision.
See MECA manual Section 3.7.5.

Floating point subtract, double pre-
cision. See MECA manual Section 3.7.7.

Floating point multiply, double pre-
cision. See MECA manual Section 3.7.9.

Floating point divide, double precision,
See MECA manual Section 3.7.11.

Fix to float conversion. See MECA
manual Section 3.7.4.

Fix to float conversion. See MECA
manual section 3.7.2.

Floating point add, single precision.
See MECA manual Section 3.7.6.

Floating point subtract, single pre-
cision. See MECA manual Section 3.7.8.

Floating point multiply, single pre-
cision. See MECA manual Section 3.7.10,

Floating point divide, single precision.
See MECA manual Section 3.7.12.

9.7 IN/RI CLASS INSTRUCTIONS

The MECA-43 does not contain any IN/RI instructions.

165

9
ASSOCIATES. IMC

9.8 FINAL NOTE

As seen from Section 9.2, the MECA contains two sets of general
purpose registers. One set (designated Processor 1) is assigned
to the Executive Processor, intended for general processing, where-
as the second set (designated Processor 2) is assigned to the I/O
Processor. Since the MECA-43 is described as 2 processors, a sec-
ond PC (R,Q - Alternate Program Counter) was included. It is possible
that a second PSW may be required to facilitate correct switch-back
to the alternate processor.

166

ASSOCUTIS. INC

SECTION 10

MICROPROCESSOR 7 - SYMGEN

10.1 INTRODUCTION

The SYMGEN (Symbol Generator) microprocessor is a 16 bit machine
with 16 general purpose registers. It processes negative numbers
via two's complement arithmetic. The SYMGEN has a vectored interrupt
structure with two high priority non-maskable interrupts and four
maskable interrupts. I/O control in the SYMGEN is of the direct type.

10.2 PROGRAMMING MODEL

Registers Designation (MIS)

Rx, x = 0, 1, 2, ...15 R0-R15

Ry, y = 0, 1, 2, ...15 R0-R15

Program Counter R

Processor Status Word R

Zero bit 2
Negative bit F
k. bit 7

Interrupt Register R

Stack Pointer R N19
General Purpose Register R

External Status Register R
28

10.3 INTERRUPT STRUCTURE

The SYMGEN employs a vectored interrupt system with two high-priority
non-maskable interrupts and four maskable interrupts.

10.4 EXAMPLES OF ADDRESSING MODES

a. Register

Ry = Rx MOVW Rx, Ry
b. Storage Reference

RXB = C MOVE #I} R

Rx = C MOVW S, RX
X

c. Indirect Via Registers

LDI Ry 0 Rx MOVW (Rx), Ry
d. Indirect Via Registers, Pre-increment

LDI R
y ? Rx + 1 MOVW +(Rx), Ry

167 9
ASSOCIATES. INC.

Offset, Indirect Via Register

RLD

INDIRECT

LDI

Rv 0 Displacement MOVW
A

Indexed Absolute

LDD R (3 R
y x

Conditional

MOVW

+ Address MOVW

JMP Address

JSR Address

JPR R
x

JPR Rv + 1

JIF Rx, Neg Address

JAD R , Address

JAD R , R
y x

DJSR Address

DJSR R , Address
A

IF R .GE.
A

R SKIP

JMAS

JLAS

JMAS

JMAS

JRFS

JR7S

JR7S

JLAS

JLAS

OP7B

(R16+Off), Rx

(Rx), Ry

MOR , R
x' y

Ro'P

(Rx)
+(RX)

Rx,
X(R16)+Off

Rx-'P

R -, (R)
y x'

R0, P

Rx'P

10.5 TRANSLATION INTO MIS

Mnemonic

Register to
Register

R = R
y x

Ry = RxF

R = R + R
y x y
R = R - R
y y x
R = R - R
y x y
Ry = Rx AND Ry

Ry = Rx 0R Ry
Ry = Rx XOR Ry

R = R * R
y x y
R,, R = R\R
V x v\ x

TABLE 10.5.1

TRANSLATION INTO MIS -

Operand(s) MIS Mnemonic

SYMGEN

Operand 1

MOVW

OP70

0P71

ADMW

SBNW

0P72

ANRW

ORRW

EXRW

MPYW

0P73

168

Operand 2

y

y

y

a
AUOCIATta. IMC

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

R , R = R\\R 0P74
y x yx-x x
R = -- Rx OP75

Ry = Ry ++ Rx ADHD Rx Ry

Ry = Ry - Rx SBND Ry Rx

Q = Rx MOVW Rx R30

Ry = Q MOVW R30 Ry

Register Operate

EXEC Rx XEQW Rx
RX(N) = 1 SETb Rx
RX(N) - 0 RESb Rx

Register Shift

SHL R , COUNT SLnW Rx
SHR Rx, COUNT SRnW Rx L

SHR Rx, COUNT, MSB SRnW Rx A

RTL Rx, COUNT RLnW Rx N

RTR Rx, COUNT RRnW Rx N

DSHL Rx, COUNT SLnD Rx
DSHR Rx, COUNT SRnD Rx L

DSHR Rx, COUNT, MSB SRnD Rx A

Storage Reference

R = C MOVW S R

R = Rx + C 0P76

R = Rx AND C OP77

R = R OR C 0P78
y x
LDD Rx @ C MOVW

STD R 0 C MOVW
x

LDD R OR + C MOVW
y x

STD R 0 Rx + C MOVW

LDI R @ R MOVW

STI R @ R MOVW

RVB = C MOVB

RXB = Rx + C ADNB

R B = Rv - C SBND
A A

RLD R 0 DISPLACEMENT MOVW

RST Rv 0 DISPLACEMENT MOVW
A

169

s Rx
Rx

S

M@RV X Ry
Ry

M(aRY
A

(V Ry
Rx (^

#1 Rx
#1 Rx
Rx #1

(RI6
+Off Rx

Ry (R16)+0ff x n "\

ASSOCIA ns. INC

Mnemonic Operand(s)

LDI R 0 R +1
y x

Ry = Rx " c

Stack Operations

PUSF 1

PUSh 1 R @ R
x y

STT R (3 R + 1
X y

POP Ry
POP R @ R

y X
Sto raqe To Storaqe

DJSR R , ADDRESS
x

DJSR ADDRESS

DJSR

JPR Rx

JPR R +1
x

Conditional
Transfers
JIF R , NEG ADDRESS

JAD R , ADDRESS

JAD Ry, Rx

IF R . GE. R SKIP
x y

IF Rx. LT. R SKIP

IF Rx. EQ. R SKIP

IF R . NE. R SKIP
x y

IF R , POS SKIP

MIS Mnemonic Operand 1 Operand 2

MOVW

0P79

+(V R
y

MOVW

MOVW

MOVW

Rx
Rx
Rx

+(R19)

+(Ry)

+(Ry)

Ry
Ry

MOVW

MOVW

(R19)-

(Rx)-

MTRAN Q WORDS OP7A

FROM R TO R
x y

Unconditional
Transfers

JMP ADDRESS

JSR ADDRESS

JSR ADDRESS

RETURN

RETURN R

I RET

I RET R
x

JUMP ADDRESS

JMAS P
JLAS Ro (R16)+Off

JLAS R0 M

RTAS (R19)-

RTAS
(Rx)-

RI70

RI71

JMAS P

JLAS R0 P

JLAS

JMAS

Rx

(Rx)

P

JMAS +(RX)

JRFS

JR7S

Rx
Rx-

(R16)+0ff

(R16)+0ff

JM7S Ry- (Rx)
OP7B

«/

OP7C

OP7D

OP7E

JRFC Rx
(R16)+SKI

170 a
ASSOCIATES. INC.

Mnemonic Operand(s)

IF R . EQ. 0 SKIP

IF R IE. 0 SKIP

IF R (N). EQ. 1 SKIP

IF R (N). EQ. 0 SKIP

IF ST(N), TRUE SKIP

IF ST(N), FALSE SKIP

I/O Operations

IN Rx, DV - ADDR

OUT Rx, DV - ADDR

MASK R
x

CALL DEBUGGER

MIS Mnemonic Operand 1 Operand 2

JR2C Rx (R16)+SKIP

JR2S Rx (R16)+SKIP

OP7F

OPA0

OPA1

OPA2

MOVW HP
Rx

MOVW Rx Mp
MOVW Rx R18
IN70

SKIP = Offset required to cause next command to be skipped.

TO.6 OP CLASS INSTRUCTIONS

Mnemonic

•R. y

R F
x

R - R
x y

R , R R R
y >

MIS Mnemonic Macro Coding

OP70 MOVW
COMW k 1>

0P71 MOVW
COMW

R
RvX >

0P72 MOVW
SBNW
MOVW

RX
R21 R21

R?1
RZI

0P73 This is a fractional divide.
R is divided by R , then mul-
tiplied by 2 . Tne quotient
is loaded into R .

R„, R y x R. R 0P74 This is double precision frac-
tional divide. The numerator
is the 32 bit quantity contained
in R , Q. Rules of single pre-
cision divide are followed.

v-
R = R + C
y x

R AND C
x

0P75 MOVD
COMD

y
?V

0P76 MOVW
ADNW sR* k

0P77 MOVW
ANRW

R
sx h () ^\

171 M J
ASSOCIA rts, IMC

Mnemonic

R = R OR C
Y x

V Rx -c

MTRAN Q WORDS
FROM R TO R

x y

IF R . GE. R SKIP
x y

IF R . LT. R SKIP
x y

IF R . EQ. R SKIP
x v y

IF Rx. NE. R SKIP

IF R (N). EQ. 1 SKIP
A

IF Rv(N). EQ. 0 SKIP
A

IF ST(N), TRUE SKIP

IF ST(N), FALSE SKIP

MIS Mnemonic Ma cro Coding

OP78 MOVW
ORRW

R
Sx

OP79 MOVW
SBNW h ly

OP7A BLOCK, MOVW
DECW
JM2S
JMAS

(Rx)+

(Ij+SKIP
BLOCK

(RyH

OP7B CMPW
JM7S

Rx
(R16)+SKIP

Ry

OP7C CMPW
JM7C

Rx
(R16)+SKIP

Ry

OP7D CMPW
JM2C

Rx
{R16)+SKIP

Ry

OP7E CMPW
JM2S

Rx
(R16)+SKIP

Ry

OP7F ANDW
JM2C

MASK
(R16)+SKIP

Rx

OPA0 ANDW
JM2S

MASK
(R16)+SKIP

Rx

OPA1 Test bit
external
equal to
instruct
to 1, sk

N of the 256 bits of
status. If bit N is
0, execute the next

ion. If bit N is equal
ip it.

0PA2

10.7 IN/RI CLASS INSTRUCTIONS

Mnemonic

CALL DEBUGGER

MIS Mnemonic

IN70

Test bit N of the 256 bits mon-
itoring external status. If bit
N is equal to 1, execute next in-
struction. If bit N is equal to
0, skip it.

Description

Generates a software
interrupt.

172

0
ASSOCIATES. INC.

SECTION 11

MICROPROCESSOR 8 - EADI

11.1 INTRODUCTION

Due to an extreme lack of documentation the major characteristics
of the EADI microprocessor could only be surmised. One of its most
apparent features is that it is closer in design to a custom bit-
slice processor than a conventional microprocessor. It appears that
the EADI utilizes 12 bit data words whereas addresses are specified
by 16 bit words. The EADI appears to have four addressing modes and
a direct-type of I/O control. Its interrupt structure cannot be
determined from the information presently available.

11.2 PROGRAMMING MODEL

Registers

A Register

B Register

C Register

Indirect Register

Program Counter

Processor Status Word

Carry
Equal
Unconditional
MSB

Interrupt Register

Stack Pointer

Quotient Register

11.3 INTERRUPT STRUCTURE

The interrupt structure of the EADI can not be determined from the
documentation presently available.

11.4 EXAMPLES OF ADDRESSING MODES

a. Direct

STAR RAM MOVT RQ, M

b. Indirect

STAI MOVT R0, (R3)

Designat" on (MIS)

Ro
Rl
R2

R3
R16
R17
bit 0
bit 2
bit A
bit C

R18
R19
R30

173

a
ASSOCIATES. INC.

c. Immediate

MASKA MASK, PGM, T ANDT

JM2C

MASKA MASK, PGM, F ANDT

JM2S

d. Conditional

FSKIP AEB CMPT

JM2S

FJSUB PGM, AEB CMPT

JM2C

MOVW

MOVW

JMAS

#1, R0

M

#1, R0

M

V Ri
(R16)+SKIP*

(R16)+SKIP0

R16' R0

**

I/L***,

M
16

11.5 TRANSLATION INTO MIS

Table 11.5.2 presents a list of the instruction set of the EADI micro-
processor. The operands utilized by the EADI system are listed in Table
11.5.1. It should be noted that all instructions utilizing ALU operands
are preceded by the macro-coding listed in Table 11.5.1. Thus the com-
plete translation into the MIS consists of a macro code composed of the
source instruction plus the appropriate preceding macro (****).

TABLE 11.5.1

ALU = ALU Code

DEC

NA

NAND

MAX

NOR

KEY TO OPERAND(S) (OP)

MOVT
DECT
S = R4

MOVT
COMT
S = R4

MOVT
ANRT
COMT
S = R4

S = #FFF

MOVT
ORRT
COMT
S = R,

174

R,

ASSOCIATES. IMC

m

MINUS

PLUS

EXOR

BR

OR"*"

LEFT

ZERO

AN DAB

INCA

AR

MOVT
COMT
S = R4

MOVT
SBNT
S = R4

MOVT
ADNT
S = R4

MOVT
EXRT
S = R4

S = R,

MOVT
ORRT

MOVT
SLIT
S = R4

s = mm
MOVT
ANRT
S = R4

MOVT
INCT
S = R4

S = R„

r

>.

DEV = Device Code

STAT
CIN
MUX4
MUX12
TROM

CC1 = Cond Code 1

U
Carry
Equ
MSB

■fS = FL

Status Bus
C Register
Bit 0 to 3 of MUX Bus
Bit 4 to 15 of MUX Bus
Trigonometric ROM

Unconditional, b = A
Carry Flag, b = 0
Equal Flag, b = 2
MSB of A Register, b

175 9
ASSOCIATES. IMC

CC2 = Cond Code 2

U Unconditional, b = A
Carry Carry Flag, b = 0
Equ Equal Flag, b = 2

RAM = RAM Address

PGM = Program Address

TABLE 11.5.2

TRANSLATION INTO MIS - • EADI

Mnemonic Operand(s) MIS Mnemonic Operand 1

RAM Reference
Instructions

STAR RAM MOVT R0
STAI MOVT R0
STBR RAM MOVT Rl
STB I MOVT Rl
SAVE RAM OP80

CLR RAM CLRT M
CLRI CLRT (R3)

PRE RAM MOVT #FFF

PREI MOVT #FFF

ST ALU **** ST ALU

STI ALU

LDAR RAM
LDAI

LDBR RAM
LDBI

I/O Instruct ions

OUT ALU, DEV

OUTL ALU, DEV

Operand 2

M

(R3)
M

(R3)

(R3)

MOVT S M

MOVT S (R3)

MOVT M R0
MOVT (R3) R

MOVT M R-,

MOVT (R3) R1

MOVT S

MOVT S

176 a
ASSOCIATES, IMC

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2

OUTA

OUTB

IN

DEV

DEV

DEV

MOVT

MOVT

MOVT

Rl

MP
HP
Ri

Branch Instruc-
1

tions

JSUB PGM, U 0P81

JSUB PGM, CARRY 0P82

JSUB PGM, EQU 0P83

JSUB PGM, MSB 0P84

STOP U IN80

STOP CARRY IN81

STOP EQU IN82

STOP MSB IN83

JUMP PGM, CC1 JMbs p
JUMP

PGM, CC1 JRCS R0 M

JOC ALU, CC1 ****

JOC

ALU, CC1

JMbs

(s)

JTP

CC1

JRCS

JRCS

R0
R0

(S)

(R0)
SKIP

SKIP

CC1

CC1

JMbs

JRCS

(R16)+0ff

R0 (R16)+Off

RTN RAM, CC2 JMbs (M)
FJUMP PGM, AEB 0P85

FJUMP PGM, AEZ 0P86

FJUMP PGM, BEZ 0P87

FJUMP PGM, AEN 0P88

FJUMP PGM, BEN 0P89

FJSUB PGM, AEB 0P8A

FJSUB PGM, AEZ 0P8B

FJSUB PGM, BEZ 0P8C

FJSUB PGM, AEN 0P8D

FJSUB PGM, BEN 0P8E

JTP CC1 JMbs (Rn)

177
^
ASSOCIATES. IMC.

Mnemonic Operand(s) MIS Mnemo nic Operand 1 Operand 2

FSKIP AEB 0P8F

FSKIP AEZ OPB0

FSKIP BEZ 0PB1

FSKIP AEN OPB2

FSKIP BEN 0PB3

MASKA MASK 0PB4, 5

MAS KB MASK 0PB6, 7

Arithmetic Loqic
Unit

DESTA ALU ****

MOVT S R0
DESTB ALU ****

w

MOVT s Rl
DESTC ALU ****

MOVT s R2
SETA Const MOVT #1 R0
SETB Const MOVT #1 Rl
SRT 0PB8

1

SLFT 0PB9

SFLAG ALU

SL0T so

SKIP = Offset required to cause the next instruction to be skipped.

SKIPO = Offset required to cause a jump out of the macro code.

I/L = Because of insufficient documentation it was not possible to de-
termine exactly how a jump to subroutine is accomplished. Accord-
ing to the available documentation the content of the program
counter (Rig) is saved in RQ. I/L is then transferred to R-|5.
Unfortunately the meaning of I/L is not known, so it could not be
translated into an MIS operand.

= EADI commands utilizing ALU operands must be preceded by the appro-
priate macro listed under ALU = ALU Code in Table 11.5.1.

*****= The case where CC1 = MSB.
++

= MOVW
MOVW
JMAS

R
}t

R
(0
16

178 a
ASSOCIATES. IMC.

11.6 OP CLASS INSTRUCTIONS

emoiric Operand(s) MIS Mnemonic Mac ro Coding
SAVE RAM OP80 MOVT

INCT > M

JSUB PGM, U 0P81 MOVW
MOVW
JMAS

R-ic R
l/l*** R
M

JSUB PGM, CARRY 0P82 JMOC
++

(R16)+SKIPO

JSUB PGM, EQU 0P83 JM2C
++

(R16)+SKIP0

JSUB PGM, MSB 0P84' JRCC
++

Ro ('

FJUMP PGM, AEB 0P85 CMPT
JM2S

R R
MU

FJUMP PGM, AEZ 0P86 JR2S R0 M

FJUMP PGM, BEZ 0P87 JR2S R1 M

FJUMP PGM, AEN 0P88 CMPT
JM2S

#FFF R
M

FJUMP PGM, BEN 0P89 CMPT
JM2S

#FFF R
M

FJSUB PGM, AEB 0P8A CMPT
JM2C
MOVW
MOVW
JMAS

Ro R
(Rlf-)+SKIPO
RKT R
I/L R
M

FJSUB PGM, AEZ 0P8B JR2C
MOVW
MOVW
JMAS

Rn (
RTe R,
I/L R
M

FJSUB PGM, BEZ 0P8C JR2C
MOVW
MOVW
JMAS

Rn (

Re R
I/L R
M

16

(R16)+SKIP0

16

(R16)+SKIP0

16

(R16)+SKIP0

16

179

9
ASSOCUTIS. INC

Mnemonic Operand(s) MIS Mnemonic Macro Cod ing

FJSUB PGM, AEN 0P8D CMPT
JM2S
MOVW
MOVW
JMAS

#FFF

R16
I/L
M

R0
)+SKIPO

R0 R16

FJSUB PGM, BEN 0P8E CMPT
JM2S
MOVW
MOVW
JMAS

#FFF

(R16

M

Rl)+SKipnl

R0 R16

FSKIP AEB 0P8F CMPT
JM2S

RO

(R16

R1
)+SKIP '

FSKIP AEZ OPB0 JR2S R0 (R16)+SKIP

FSKIP BEZ OPB1 JR2S Rl (R16)+SKIP

FSKIP AEN OPB2 CMPT
JM2S

#FFF

(R16

Rn
)+SKIP u

FSKIP BEN OPB3 CMPT
JM2S

#FFF

(R16

Ri
)+SKIP '

MASKA MASK, PGM, T 0PB4 ANDT
JM2C

#1
M

R0

MASKA MASK, PGM, F OPB5 ANDT
JM2S

#1
M

R0

MAS KB MASK, PGM, T 0PB6

i

ANDT
JM2C

#1
M

Rl

MAS KB MASK, PGM, F 0PB7 ANDT
JM2S

#1
M

Rl

SRT 0PB8 SRIT
SRIT R0 R2

L
L

SLFT 0PB9 SLIT
SLIT R0 R2

11.7 IN/RI CLASS INSTRUCTIONS

Mnemonic Operand(s) MIS Mnemonic Description

STOP U IM85 Unconditional stop

STOP CARRY IN86 Conditional stop

STOP EQU IN87 Conditional stop

STOP MSB

180

IN 88 f.nndit.innal stnn

H >
ASSOCIATES. INC.

APPENDIX D:

REPORT OF A TASK STUDY ON

SOFTWARE DEVELOPMENT AIDES

FOR THE

U.S. ARMY ADVANCED ATTACK HELICOPTER

FIRE CONTROL SYSTEM

181 s
ASSOCIATES. INC

This page was left blank intentionally.

182

9
ASSOCIATES. IMC

APPENDIX D

REPORT OF A TASK STUDY
ON

SOFTWARE DEVELOPMENT AIDES
IN

U. S. ARMY ADVANCED ATTACK HELICOPTER (AAH) FIRE CONTROL SYSTEMS

1. INTRODUCTION

This study of software development aides was conducted
in the context of the Advanced Attack Helicopter (AAH) Fire
Control System and as required by the scope of work of the sub-
ject contract. Presently the fire control system is designed
using fourteen embedded microprocessors of nine different
types. The large number of computer types and computing lan-
guages make future maintenance very difficult and expensive.
The U.S. Army is considering replacement of these embedded
microprocessors by a single microprocessor, henceforth referred
to as the common-microprocessor. The evolution from the origi-
nal microprocessors to the common-microprocessor is envisaged
as proceeding in three phases. In the first phase the replace-
ment standard-microprocessor will be equipped with micropro-
grams of the respective original microprocessors and will be
capable of emulating the programs in the original micropro-
cessors. In the second phase the assembly language programs of
the original microprocessors will be translated automatically
into the assembly language of the standard-microprocessor.
This will enable maintenance of the programs, originally
created in multiplicity of assembly languages, using uniform
assembly language of the standard microprocessor. The mainte-
nance of these programs will thereby require far less
expertise and would be less costly. Finally, the third phase
will be oriented to future development of new or replacement
programs. The software development would be further simplified
and less costly by availability of a High Level Language
compiler for the common-microprocessor, in which the new pro-
grams will be composed. This study is concerned with software
development aides such as the High Level Language compiler as
well as an assembler, debugger, simulater and link editor,
which will all be valuable in development of future programs.

183 a
ASSOCIATES. INC.

These software development aides will have to be
endowed with certain capabilities which are above and beyond
those required in general for computer program development.
These special capabilities originate from the real time and
efficiency requirements of the fire control system. In
particular, the compiler for the High Level Language would be
required to produce highly optimized code which provides faster
execution time and reduced memory requirements. Also, a simu-
lator would be very helpful to allow development and debugging
of programs on a larger computer system, thereby speeding the
program development process. The assembler and link editor
are assumed not to pose any special problems and are not dis-
cussed here further.

The remainder of this appendix is devoted to discus-
sions of two areas:

1) Selection of a High Level Language

2) Optimizer characteristics of the computer

The technique for selection of a High Level Language
and for construction of an optimizing compiler represent known
state of the art. Therefore, the respective development does
not appear to represent significant risks. Generally, five
man-years of effort over one and one half years would be
required.

2. SELECTION OF A HIGH LEVEL LANGUAGE

Probably the foremost requirement of a High Level
Language is that it be widely used. Thereby there would be a
large community of individuals proficient in the language who
would not require specialized training to be able to maintain
or compose programs. The language therefore should also be
recognized as a standard by the American National Standards
Institute or by the Department of Defense. A second require-
ment concerns the availability of facilities in the language
that will make programming easier and less costly. However, due
to the rapid changes in computer languages it is rather diffi-
cult to establish a clear advantage of one language over
another in this latter respect. For example, FORTRAN is the
oldest established High Level Language, however, the new 19 77
standard of FORTRAN includes many facilities which make it
competitive with the more recently introduced languages.
PASCAL is a newly introduced language which recently has found
particular favor in use for microprocessors. PASCAL is cur-
rently going through the process of standardization and there
are several versions for this language with increasing
capabilities. ADA is a recently proposed programming language

184 0
ASSOCIATES, INC.

= /

intended as a standard for the Department of Defense, for which
there has not been a compiler so far. This dynamic situation
with the most important High Level Language would make it
difficult to select a High Level Language. However, any of the
above would be adequate.

There are a number of other considerations which may be
necessary to take into account in evaluating and selection of
High Level Languages. Some of these are listed below.

1) Correcting programs by default: The underlying
philosophy in some languages is that if a user omits certain
information in statements the compiler then introduces default
values to complete the program statements. In other languages,
this is being objected to on the ground that the formalism of
the semantics of the program is thereby undermined. An example,
of these opposing approaches are FORTRAN, where data types are
assumed if not specified by the user, and PASCAL where data types
must be specified or otherv/ise an error message is issued.

2) Memmory allocation: In some languages, the amount of
memory required for data is determined in the program statements
themselves. An example of this type of language is FORTRAN
where the amount of memory allocated to data is fixed at the
time of the compilation of the program. In other languages,
the amount of memory needed may be determined at run time and
acquisition or release of memory space can be performed dynami-
cally at run time. Certain versions of PASCAL and in the future
ADA are examples of the latter philosophy.

3) Size of compiler: Generally the more powerful the
language the larger would be the compiler. If it is required
to run the compiler on the same microprocessor that is used for
the application then it will be very important that the compiler
would be simple and have limited memory space requirements.
For instance, FORTRAN 77 is a very large compiler and may there-
fore be too large. By comparison PASCAL compilers have been
much smaller, which has made PASCAL such a favorite for program-
ming microprocessors.

4) Dependence on operating system features: Some
programming languages depend on a certain commands that are
performed by an operating system and also require incorporating
in the program routines which support the various statements.
This would necessarily increase the memory requirements of the
programs generated by such a compiler. Again, PASCAL is an
example where the programs generated could be independent of
functions of operating systems or of libraries of routines that
must be incorporated in the program.

185 a
ASSOCIATES. INC.

5) Special programming features: There is a variety of
other features which are important in facilitating the program-
ming process in some applications. Several such features are
listed below.

Data S
FORTRAN 7 7 and
tions are aval
PASCAL allows
capability is
languages have
acter strings
FORTRAN 77 and
very important
ent file organ
FORTRAN 7 7 and

tructure declarations are available both in
in PASCAL. As noted, the data type specifica-

lable in PASCAL but not in FORTRAN. Additionally,
user specifications of data types. Recursive
available in PASCAL but not in FORTRAN. Some
very powerful capability for manipulating char-

and for structured programming constructs. Both
PASCAL possess these features. Finally it is
to be able to accommodate the variety of differ-

izations of input-output data. Again both
PASCAL include such facilities.

3. COMPILER OPTIMIZATION

In addition to the normal compilation, it will be
necessary to include in the compiler optimization processes
that will reduce program memory and execution time require-
ments. Optimization techniques can basically be divided into
two types. First, where the source program statements provided
by the user are modified with the objective of optimizing the
program. Second, optimal instruction sequences are selected to
represent the various constructs in the High Level Language to
assure efficient utilization of instructions and registers in
the object machine.

Modifying the source code:
process include the following:

The techniques used in this

1) The order of the statement in the program may be
modified to make the program more efficient: For example, a
computation statement in an iteration loop which is independent
on the iteration parameter can be moved out of the loop and
placed ahead of it. Also scope of certain iteration loops may
be optimized by merging wherever possible loops with the same
iteration parameters.

2) Modifying individual statements to reduce necessary
computation: For instance, this involves recognizing common
sub-expressions in a statement and modifying the statement so
that the sub-expression is computed only once. Commutativity of
operators can be utilized to reduce the number of operations.
Operations which can be done during compile time could be elimi-
nated altogether. Sometimes., it may be effective to replace a
multiplication with additions, and division with subtractions.

186 a
ASSOCIATES. IMC

■ ■ ■

3) Consolidation and deletion of statement: This would
include removing any code which is not referred. If a proce-
dure or a function is called only once then the call for the
procedure or function may be eliminated.

4) Minimizing the data storage requirements: This
includes determining which variables do not require space simul-
taneously and therefore can share memory space.

The gereration of an e
represent High Level Language
optimization techniques. The
ate high level code which take
architecture and then to gener
machine. Storage savings can
registers wherever possible,
further may be utilized. For
important in computing express
techniques is very similar to
where the process of translati
described. Therefore, the opt
described here in further deta

fficient machine code to
includes some global and local
approach used is first to gener-
s advantage of the target machine
ate machine code for the object
be achieved by allocating working
Special computer architecture
instance, stuck operations are
ions. This class of optimization
those described in Appendix B
on of assembly language code was
imization techniques are not
il.

187

Q -<

ASSOCIATES, INC.

DISTRIBUTION LIST

Commander
US Army Armament Research and Development Command,

12
2
2
5
1
1
1

12

Attn. DRDAR-SCF-DA
DRDAR-QAF-R
DRDAR-QAF-A
DRDAR-TSS
DRDAR-SC
DRDAR-SCP
DRDAR-SF

Dover, N. J. 07801

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Weapon Systems Concept Team/CSL
Attn. DRDAR-ACW
Aberdeen Proving Ground, MD 21010

Technical Library
Attn. DRDAR-CLJ-L
Aberdeen Proving Grounds, MD 21010

Director
US Army Ballistics Research Laboratory
ARRADCOM - Attn DRDAR-TSB-S
Aberdeen Proving Grounds, MD 21010

Benet Weapons Laboratory
Technical Library
Attn. DRDAR-LCB-TL
Watervliet, NY 12189

Commander 1
US Army Armament Material Readiness Command
Attn. DRSAR-LEP-L
Rock Island, IL 61299

US Army Material Systems Analysis Activity 1
Attn. DRXSY-MP
Aberdeen Proving Grounds, MD 21005

Q
ASSOCUTIS. INC.

